F-theory and AdS₃/CFT₂ #### Craig Lawrie 1612.05640 with S. Schäfer-Nameki, T. Weigand 1612.06393 with S. Schäfer-Nameki, T. Weigand 1705.04679 with C. Couzens, D. Martelli, S. Schäfer-Nameki, J. Wong # AdS₃/CFT₂ and F-theory #### Craig Lawrie 1612.05640 with S. Schäfer-Nameki, T. Weigand 1612.06393 with S. Schäfer-Nameki, T. Weigand 1705.04679 with C. Couzens, D. Martelli, S. Schäfer-Nameki, J. Wong # F-theory and AdS₃/CFT₂ #### Craig Lawrie 1612.05640 with S. Schäfer-Nameki, T. Weigand 1612.06393 with S. Schäfer-Nameki, T. Weigand 1705.04679 with C. Couzens, D. Martelli, S. Schäfer-Nameki, J. Wong #### Introduction F-theory is physics in terms of geometry #### Introduction ## F-theory is physics in terms of geometry #### Talks at this conference: ## F-theory is physics in terms of geometry #### Talks at this conference: ## Strings from D3-branes on Curves D3-branes can wrap curves in base of F-theory D3-branes on $\mathbb{R}^{1,1} \times C$ These are strings in D dimensions | D | | |---|---| | 6 | self-dual strings | | 4 | dual to (half-SUSY) instantons; cosmic strings | | 2 | spacetime filling, necessary for tadpole cancellation | #### The Principle Feature of F-theory $\rightarrow \mathcal{N} = 4$ SYM with varying coupling, τ , on $C \subset D3$ -brane For $d\tau = 0$ worldvolume theory on string is σ -model into Hitchin moduli space [Bershadsky, Johanson, Sadov, Vafa] For $d\tau \neq 0$, what is SCFT on string? #### Roadmap - Single D3-brane on C with varying τ [CL, Schäfer-Nameki, Weigand] \rightarrow study explicitly via topological duality twist - - \rightarrow no explicit construction - \rightarrow construct AdS₃ supergravity duals - \rightarrow determine central charges from holography - Schäfer-Nameki, Wong Ouzens, CL, Martelli, Schäfer-Nameki, Wong - \rightarrow central charges from M-theory via M/F-duality - \rightarrow central charges from microscopic constructions - \rightarrow self-dual strings in 6d and M5-brane anomaly inflow #### Topological Duality Twist Abelian $\mathcal{N}=4$ SYM \Rightarrow "bonus" $U(1)_D$ symmetry [Intriligator], [Kapustin, Witten] $$\gamma: \tau \to \frac{a\tau + b}{c\tau + d}, \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z}) \quad \to \quad e^{i\alpha(\gamma)} \equiv \frac{c\tau + d}{|c\tau + d|} \in U(1)_D$$ Objects have charge q_D if transforms by $e^{iq_D\alpha(\gamma)}$ under γ We have a $U(1)_D$ connection $$\mathcal{A}_D = \frac{\mathrm{d}\tau_1}{2\tau_2}$$ Topological duality twist: To preserve SUSY compensate non-trivial transformation of supercharges under holonomy of C and $U(1)_D$ by R-symmetry transformation. [Martucci] #### Central Charges Construct topological duality twisted dimensional reduction to 2d [CL, Schäfer-Nameki, Weigand] SUSY on worldvolume of string depends on dimension: Can compute the central charges in each case; for F-theory to 6d: $$c_R = 3C \cdot C + 3c_1(B) \cdot C$$ $$c_L = 3C \cdot C + 9c_1(B) \cdot C$$ How to generalize to multiple D3-branes on C? Topological duality twist does **not** (obviously) generalize \rightarrow instead can consider M5-branes [Assel, Schäfer-Nameki] Can consider AdS/CFT \Rightarrow large $N \Rightarrow$ large numbers of D3-branes #### Enter AdS Explore CFT_d via AdS_{d+1} solutions of gravity [Maldacena] Top-down approach: construct general supersymmetric solutions of Type II/11d SUGRA with AdS_{d+1} factor [Martelli, Sparks] For F-theory: Type IIB solutions with AdS_{d+1} and non-trivial τ - o au variation comes from 7-branes; log-singularities and monodromy - \rightarrow no such solutions known with full $SL(2,\mathbb{Z})$ monodromy - \rightarrow for poles in τ see [Couzens], [D'Hoker, Gutperle, Uhlemann] #### AdS_3 and 5d Black Holes AdS₃ arises generally as the near horizon limit of black holes in 5d Mircostate counting of dual CFT₂ - \rightarrow microscopic origin of black hole entropy - \rightarrow with enough SUSY can(?) compute exact degeneracies of states 5d BPS black holes arise from 6d BPS strings on S^1 \rightarrow microstate counting of strings in 6d \rightarrow macroscopic entropy In 5d supergravity entropy from string microstates done with - $\mathcal{N}=4$ or $\mathcal{N}=2$ [Strominger, Vafa], [Breckenridge, Myers, Peet, Vafa] - \bullet $\mathcal{N}=1$ [Vafa], [Haghighat, Murthy, Vafa, Vandoren] In [Haghighat, Murthy, Vafa, Vandoren] entropy determined for N=1 via topological duality twist and effective 6d supergravity ## General Solutions for IIB with AdS_3 Factor and (0,2) SUSY IIB content: $$F_5 \longleftrightarrow \mathrm{D3\text{-}branes}$$ $G_3 \begin{cases} F_3 \longleftrightarrow \mathrm{D1/D5\text{-}branes} \\ H_3 \longleftrightarrow \mathrm{F\text{-}strings/NS5\text{-}branes} \end{cases}$ $\tau = C_0 + ie^{-\Phi} \longleftrightarrow 7\text{-}branes$ $$\frac{\mathrm{Set} \ G_3 = 0}{\mathrm{Set} \ G_3 = 0}$$ General starting point: $$ds^{2} = e^{2A}ds^{2}(AdS_{3}) + ds^{2}(M_{7})$$ $F_{5} = (1 + *)vol(AdS_{3}) \wedge F^{(2)}$ To preserve (0,2) SUSY solve Killing spinor equation $$\nabla_{M}\epsilon + \frac{i}{192} \Gamma^{P_{1}P_{2}P_{3}P_{4}} F_{MP_{1}P_{2}P_{3}P_{4}} \epsilon = 0$$ ## General Solutions for IIB with AdS_3 Factor and (0,2) SUSY General solution [Couzens, CL, Martelli, Schäfer-Nameki, Wong] $$S^1 \hookrightarrow M_7$$ $$\downarrow$$ $$M_6$$ S^1 fibration provides $U(1)_r$ R-symmetry of (0,2) τ varation combines into an auxilliary Kähler elliptic fibration M_8 over M_6 with non-trivial constraint $$\Box_8 R_8 - \frac{1}{2} R_8^2 + R_{8ij} R_8^{ij} = 0$$ First consider more SUSY - \rightarrow (0,4) SUSY \Rightarrow dual to strings in 6d - \rightarrow (2,2) SUSY #### Preserving (0,4) SUSY Requiring (0,4) is highly constrained, A = const and Killing spinors transform in (2,1) of S^3 isometry $$SO(4) = SU(2)_r \times SU(2)_L$$ $SU(2)_r \to \text{superconformal R-symmetry}$ $SU(2)_L \to \text{additional flavour symmetry}$ #### Preserving (0,4) SUSY Requiring (0,4) is highly constrained A = const and $$S^{1} \hookrightarrow S^{3}/\Gamma \qquad Y_{3} \leftarrow \mathbb{E}_{\tau}$$ $$\downarrow \qquad \qquad \downarrow$$ $$M_{6} = S^{2} \times B_{2}$$ Killing spinors transform in $(\mathbf{2},\mathbf{1})$ of S^3 isometry $$SO(4) = SU(2)_r \times SU(2)_L$$ $SU(2)_r \to \text{superconformal R-symmetry}$ $SU(2)_L \to \text{additional flavour symmetry when } \Gamma = 1$ We preserve the same SUSY for $\Gamma \subset SU(2)_L$ finite subgroup. #### (0,4) Solution General F-theory solution of Type IIB SUGRA dual to 2d(0,4) is $$\mathbb{E}_{\tau} \hookrightarrow Y_3$$ $$\downarrow$$ $$AdS_3 \times S^3/\Gamma \times B_2$$ with F_5 flux $$F_5 = (1 + *) \operatorname{vol}(AdS_3) \wedge J_B$$ J_B is Kähler form on B Poincaré dual to a curve C $\Rightarrow C$, wrapped by D3-brane, ample in B #### Kaluza–Klein Monopoles Take $$\Gamma = \mathbb{Z}_M$$ S^3/\mathbb{Z}_M is near horizon of Taub-NUT metric; brane solution is $$\mathbb{R}^{1,1} \times TN_M \times B_2$$ with N D3-branes on $\mathbb{R}^{1,1} \times C$ \rightarrow near-horizon $$AdS_3 \times S^3/\mathbb{Z}_M \times B_2$$ M Kaluza–Klein monopoles on $\mathbb{R}^{1,1} \times B_2$ M=1 is a special case: near-horizon geometry is the same for zero or one KK monopoles ## Holographic Central Charges Leading Order Brown-Henneaux formula $$c = \frac{3R_{\text{AdS}}}{2G_N^{(3)}}$$ $$c_{\text{SUGRA}}^{\text{IIB}} = N^2 \frac{3\text{vol}(S^3/\mathbb{Z}_M)\text{vol}(B)32\pi^2}{\text{vol}(S^3/\mathbb{Z}_M)} = 6N^2M\text{vol}(B)$$ Further $$vol(B) = \int_B J_B \wedge J_B = C \cdot C$$ So $$c_{\text{SUGRA}}^{\text{IIB}} = 3N^2MC \cdot C$$ is the leading order contribution to the (left and right) central charge. Gravitational Chern–Simons couplings from 7-branes bulk $$S_{CS}(\Gamma_{\text{AdS}_3}) = \frac{c_L - c_R}{96\pi} \int_{\text{AdS}_3} \omega_{CS}(\Gamma_{\text{AdS}_3})$$ \Rightarrow $$c_L - c_R = 6Nc_1(B) \cdot C$$ Gauging SO(4) isometry of S^3 $$\Rightarrow$$ $$k_r^{(1)} = \frac{1}{2} N c_1(B) \cdot C$$ ## Central Charges from Type IIB SUGRA Leading and subleading central charges $$c_R^{\text{IIB}} = 3N^2C \cdot C + 3Nc_1(B) \cdot C$$ $$c_L^{\text{IIB}} = 3N^2C \cdot C + 9Nc_1(B) \cdot C$$ Matches with spectrum computation for N=1: $$c_R^{\text{spectrum}} = 3C \cdot C + 3c_1(B) \cdot C$$ $c_L^{\text{spectrum}} = 3C \cdot C + 9c_1(B) \cdot C$ Only for M = 1 \Rightarrow subleading contributions for M > 1 tricky \Rightarrow look at T-duality to M-theory #### Recap – The Story So Far - Constructed general solution of Type IIB supergravity with - \rightarrow (0,4) SUSY in dual SCFT - $\rightarrow G_3 = 0$ and arbitrary τ - @ Geometry: $$AdS_3 \times S^3/\Gamma \times B_2$$ - Flux through (ample) curve in $B_2 \Rightarrow N$ D3-branes on C - Oual SCFT - → worldvolume theory of string in 6d F-theory compactification #### T-duality to M-theory F-theory on Y_3 T-dual to M-theory on Y_3 General solution: $$AdS_3 \times S^2 \times Y_3$$ with flux $$G_4 = \operatorname{dvol}(S^2) \wedge J_{Y_3}$$ (See [Colgain, Wu, Yavartanoo]) J_{Y_3} is Kahler form on Y_3 Poincaré dual to divisor $$MB + N\widehat{C}$$ ## T-duality to M-theory M5-branes on $$\mathbb{R}^{1,1} \times P$$ $$P \in |MB + N\hat{C}|$$ N D3-branes on $C \longleftrightarrow N$ M5-branes on \widehat{C} M KK monopoles $\longleftrightarrow M$ M5-branes on B See also [Bena, Diaconescu, Florea] $$\begin{split} \widehat{C} \cdot \widehat{C} \cdot \widehat{C} &= 0 \\ \Rightarrow \text{divisor } \widehat{C} \text{ not ample, not Poincar\'e dual to K\"ahler form} \\ \Rightarrow \text{no AdS dual to string from M5-branes wrapping } \widehat{C} \end{split}$$ ## Central Charges from M-theory KK monopoles now M5-branes on B ightarrow Brown–Henneaux for holographic central charges for all M $$c_R^{\text{M-th}} = 3N^2MC \cdot C + 3N(2 - M^2)c_1(B) \cdot C$$ $$c_L^{\text{M-th}} = 3N^2MC \cdot C + 3N(4 - M^2)c_1(B) \cdot C$$ Matches c_{PJ}^{IIB} for $M = 1$ Includes both leading and subleading orders in N - \rightarrow also subsubleading \rightarrow center of mass contributions - \rightarrow not discussed today (but agrees with microscopic constructions) #### Microscopic Constructions #### Self-dual Strings #### D3-branes on C - \rightarrow self-dual strings (coupled to self-dual 2-form B) in 6d - \rightarrow anomaly polynomial known [Berman, Harvey], [Shimizu, Tachikawa] see also [CL, Schäfer-Nameki, Weigand] $$I_4^{\text{SDS}} = -\frac{1}{24}p_1(T)\left[6Nc_1(B)\cdot C\right] + c_2(R)\left[\frac{1}{2}N^2C\cdot C + \frac{1}{2}Nc_1(B)\cdot C\right] + \cdots$$ Superconformal algebra relation $$c_R = 6k_R = 3N^2C \cdot C + 3Nc_1(B) \cdot C$$ Gravitational anomaly $$c_L - c_R = 6Nc_1(B) \cdot C$$ ## Microscopic Constructions M5-brane Anomaly Inflow Anomaly polynomial for N M5-branes [(Freed,) Harvey, Minasian, Moore] $$I_8[N] = NI_8[1] + \frac{1}{24}(N^3 - N)p_2(\mathcal{N})$$ $$I_8[1] = \frac{1}{48} \left[p_2(\mathcal{N}) - p_2(TW) + \frac{1}{4}(p_1(TW) - p_1(\mathcal{N}))^2 \right]$$ Integrate over complex surface P (say $MB + N\hat{C}$) $$I_4^{M5}[P] = -\frac{1}{24}p_1(W_2)\left[\frac{1}{2}c_2(Y_3)\cdot P\right] + p_1(\mathcal{N}_3)\left[\frac{1}{6}P\cdot P\cdot P\right] + \cdots$$ Central charges $(P = MB + N\hat{C} \text{ ample})$ [Maldacena, Strominger, Witten] $$c_R = 6k_3 = 3N^2MC \cdot C + (2 - M^2)Nc_1(B) \cdot C$$ $c_L - c_R = 2N(4 - M^2)c_1(B) \cdot C$ #### Summary of (0,4) Solution Construct general AdS₃ solution of IIB SUGRA with dual (0,4) SCFT Computed holographic central charges (M=1) $$c_R = 3N^2C \cdot C + 3Nc_1(B) \cdot C$$ $$c_L = 3N^2C \cdot C + 9Nc_1(B) \cdot C$$ Agrees with central charge computation from - 11d supergravity - Self-dual strings in 6d - **3** M5-brane anomaly inflow - Spectrum (for N=1) #### Conclusions and Future Directions - Started systematically exploring holographic constructions in F-theory varying axio-dilaton. - Constructed AdS₃ solutions preserving (0, 2), (0, 4), and (2, 2) SUSY in dual CFT₂ - \rightarrow what are the dual CFTs for (0,2), (2,2)? - For (0,4) we obtained a microscopic understanding of the holographic constructions - \rightarrow what about $G_3 \neq 0 \rightarrow$ all AdS₃ solutions dual to (0,4) - AdS duals to strings of minimial 6d SCFTs [del Zotto, Lockhart] - \rightarrow curve wrapped by D3-branes not ample