F-theory and AdS₃/CFT₂

Craig Lawrie

1612.05640 with S. Schäfer-Nameki, T. Weigand 1612.06393 with S. Schäfer-Nameki, T. Weigand 1705.04679 with C. Couzens, D. Martelli, S. Schäfer-Nameki, J. Wong

AdS₃/CFT₂ and F-theory

Craig Lawrie

1612.05640 with S. Schäfer-Nameki, T. Weigand 1612.06393 with S. Schäfer-Nameki, T. Weigand 1705.04679 with C. Couzens, D. Martelli, S. Schäfer-Nameki, J. Wong

F-theory and AdS₃/CFT₂

Craig Lawrie

1612.05640 with S. Schäfer-Nameki, T. Weigand 1612.06393 with S. Schäfer-Nameki, T. Weigand 1705.04679 with C. Couzens, D. Martelli, S. Schäfer-Nameki, J. Wong

Introduction

F-theory is physics in terms of geometry

Introduction

F-theory is physics in terms of geometry

Talks at this conference:

F-theory is physics in terms of geometry

Talks at this conference:

Strings from D3-branes on Curves

D3-branes can wrap curves in base of F-theory

D3-branes on $\mathbb{R}^{1,1} \times C$

These are strings in D dimensions

D	
6	self-dual strings
4	dual to (half-SUSY) instantons; cosmic strings
2	spacetime filling, necessary for tadpole cancellation

The Principle Feature of F-theory

 $\rightarrow \mathcal{N} = 4$ SYM with varying coupling, τ , on $C \subset D3$ -brane

For $d\tau = 0$ worldvolume theory on string is σ -model into Hitchin moduli space [Bershadsky, Johanson, Sadov, Vafa]

For $d\tau \neq 0$, what is SCFT on string?

Roadmap

- Single D3-brane on C with varying τ [CL, Schäfer-Nameki, Weigand] \rightarrow study explicitly via topological duality twist
- - \rightarrow no explicit construction
 - \rightarrow construct AdS₃ supergravity duals
 - \rightarrow determine central charges from holography
- Schäfer-Nameki, Wong
 Ouzens, CL, Martelli, Schäfer-Nameki, Wong
 - \rightarrow central charges from M-theory via M/F-duality
 - \rightarrow central charges from microscopic constructions
 - \rightarrow self-dual strings in 6d and M5-brane anomaly inflow

Topological Duality Twist

Abelian $\mathcal{N}=4$ SYM \Rightarrow "bonus" $U(1)_D$ symmetry [Intriligator], [Kapustin, Witten]

$$\gamma: \tau \to \frac{a\tau + b}{c\tau + d}, \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z}) \quad \to \quad e^{i\alpha(\gamma)} \equiv \frac{c\tau + d}{|c\tau + d|} \in U(1)_D$$

Objects have charge q_D if transforms by $e^{iq_D\alpha(\gamma)}$ under γ

We have a $U(1)_D$ connection

$$\mathcal{A}_D = \frac{\mathrm{d}\tau_1}{2\tau_2}$$

Topological duality twist: To preserve SUSY compensate non-trivial transformation of supercharges under holonomy of C and $U(1)_D$ by R-symmetry transformation. [Martucci]

Central Charges

Construct topological duality twisted dimensional reduction to 2d [CL, Schäfer-Nameki, Weigand]

SUSY on worldvolume of string depends on dimension:

Can compute the central charges in each case; for F-theory to 6d:

$$c_R = 3C \cdot C + 3c_1(B) \cdot C$$
$$c_L = 3C \cdot C + 9c_1(B) \cdot C$$

How to generalize to multiple D3-branes on C?

Topological duality twist does **not** (obviously) generalize \rightarrow instead can consider M5-branes [Assel, Schäfer-Nameki] Can consider AdS/CFT \Rightarrow large $N \Rightarrow$ large numbers of D3-branes

Enter AdS

Explore CFT_d via AdS_{d+1} solutions of gravity [Maldacena]

Top-down approach: construct general supersymmetric solutions of Type II/11d SUGRA with AdS_{d+1} factor [Martelli, Sparks]

For F-theory: Type IIB solutions with AdS_{d+1} and non-trivial τ

- o au variation comes from 7-branes; log-singularities and monodromy
 - \rightarrow no such solutions known with full $SL(2,\mathbb{Z})$ monodromy
 - \rightarrow for poles in τ see [Couzens], [D'Hoker, Gutperle, Uhlemann]

AdS_3 and 5d Black Holes

AdS₃ arises generally as the near horizon limit of black holes in 5d

Mircostate counting of dual CFT₂

- \rightarrow microscopic origin of black hole entropy
 - \rightarrow with enough SUSY can(?) compute exact degeneracies of states

5d BPS black holes arise from 6d BPS strings on S^1

 \rightarrow microstate counting of strings in 6d \rightarrow macroscopic entropy

In 5d supergravity entropy from string microstates done with

- $\mathcal{N}=4$ or $\mathcal{N}=2$ [Strominger, Vafa], [Breckenridge, Myers, Peet, Vafa]
- \bullet $\mathcal{N}=1$ [Vafa], [Haghighat, Murthy, Vafa, Vandoren]

In [Haghighat, Murthy, Vafa, Vandoren] entropy determined for N=1 via topological duality twist and effective 6d supergravity

General Solutions for IIB with AdS_3 Factor and (0,2) SUSY

IIB content:

$$F_5 \longleftrightarrow \mathrm{D3\text{-}branes}$$
 $G_3 \begin{cases} F_3 \longleftrightarrow \mathrm{D1/D5\text{-}branes} \\ H_3 \longleftrightarrow \mathrm{F\text{-}strings/NS5\text{-}branes} \end{cases}$ $\tau = C_0 + ie^{-\Phi} \longleftrightarrow 7\text{-}branes$
$$\frac{\mathrm{Set} \ G_3 = 0}{\mathrm{Set} \ G_3 = 0}$$

General starting point:

$$ds^{2} = e^{2A}ds^{2}(AdS_{3}) + ds^{2}(M_{7})$$

 $F_{5} = (1 + *)vol(AdS_{3}) \wedge F^{(2)}$

To preserve (0,2) SUSY solve Killing spinor equation

$$\nabla_{M}\epsilon + \frac{i}{192} \Gamma^{P_{1}P_{2}P_{3}P_{4}} F_{MP_{1}P_{2}P_{3}P_{4}} \epsilon = 0$$

General Solutions for IIB with AdS_3 Factor and (0,2) SUSY

General solution

[Couzens, CL, Martelli, Schäfer-Nameki, Wong]

$$S^1 \hookrightarrow M_7$$

$$\downarrow$$

$$M_6$$

 S^1 fibration provides $U(1)_r$ R-symmetry of (0,2)

 τ varation combines into an auxilliary Kähler elliptic fibration M_8 over M_6 with non-trivial constraint

$$\Box_8 R_8 - \frac{1}{2} R_8^2 + R_{8ij} R_8^{ij} = 0$$

First consider more SUSY

- \rightarrow (0,4) SUSY \Rightarrow dual to strings in 6d
- \rightarrow (2,2) SUSY

Preserving (0,4) SUSY

Requiring (0,4) is highly constrained, A = const and

Killing spinors transform in (2,1) of S^3 isometry

$$SO(4) = SU(2)_r \times SU(2)_L$$

 $SU(2)_r \to \text{superconformal R-symmetry}$ $SU(2)_L \to \text{additional flavour symmetry}$

Preserving (0,4) SUSY

Requiring (0,4) is highly constrained A = const and

$$S^{1} \hookrightarrow S^{3}/\Gamma \qquad Y_{3} \leftarrow \mathbb{E}_{\tau}$$

$$\downarrow \qquad \qquad \downarrow$$

$$M_{6} = S^{2} \times B_{2}$$

Killing spinors transform in $(\mathbf{2},\mathbf{1})$ of S^3 isometry

$$SO(4) = SU(2)_r \times SU(2)_L$$

 $SU(2)_r \to \text{superconformal R-symmetry}$ $SU(2)_L \to \text{additional flavour symmetry when } \Gamma = 1$

We preserve the same SUSY for $\Gamma \subset SU(2)_L$ finite subgroup.

(0,4) Solution

General F-theory solution of Type IIB SUGRA dual to 2d(0,4) is

$$\mathbb{E}_{\tau} \hookrightarrow Y_3$$

$$\downarrow$$

$$AdS_3 \times S^3/\Gamma \times B_2$$

with F_5 flux

$$F_5 = (1 + *) \operatorname{vol}(AdS_3) \wedge J_B$$

 J_B is Kähler form on B Poincaré dual to a curve C $\Rightarrow C$, wrapped by D3-brane, ample in B

Kaluza–Klein Monopoles

Take
$$\Gamma = \mathbb{Z}_M$$

 S^3/\mathbb{Z}_M is near horizon of Taub-NUT metric; brane solution is

$$\mathbb{R}^{1,1} \times TN_M \times B_2$$

with N D3-branes on $\mathbb{R}^{1,1} \times C$

 \rightarrow near-horizon

$$AdS_3 \times S^3/\mathbb{Z}_M \times B_2$$

M Kaluza–Klein monopoles on $\mathbb{R}^{1,1} \times B_2$

M=1 is a special case: near-horizon geometry is the same for zero or one KK monopoles

Holographic Central Charges

Leading Order

Brown-Henneaux formula

$$c = \frac{3R_{\text{AdS}}}{2G_N^{(3)}}$$

$$c_{\text{SUGRA}}^{\text{IIB}} = N^2 \frac{3\text{vol}(S^3/\mathbb{Z}_M)\text{vol}(B)32\pi^2}{\text{vol}(S^3/\mathbb{Z}_M)} = 6N^2M\text{vol}(B)$$

Further

$$vol(B) = \int_B J_B \wedge J_B = C \cdot C$$

So

$$c_{\text{SUGRA}}^{\text{IIB}} = 3N^2MC \cdot C$$

is the leading order contribution to the (left and right) central charge.

Gravitational Chern–Simons couplings from 7-branes bulk

$$S_{CS}(\Gamma_{\text{AdS}_3}) = \frac{c_L - c_R}{96\pi} \int_{\text{AdS}_3} \omega_{CS}(\Gamma_{\text{AdS}_3})$$

 \Rightarrow

$$c_L - c_R = 6Nc_1(B) \cdot C$$

Gauging SO(4) isometry of S^3

$$\Rightarrow$$

$$k_r^{(1)} = \frac{1}{2} N c_1(B) \cdot C$$

Central Charges from Type IIB SUGRA

Leading and subleading central charges

$$c_R^{\text{IIB}} = 3N^2C \cdot C + 3Nc_1(B) \cdot C$$
$$c_L^{\text{IIB}} = 3N^2C \cdot C + 9Nc_1(B) \cdot C$$

Matches with spectrum computation for N=1:

$$c_R^{\text{spectrum}} = 3C \cdot C + 3c_1(B) \cdot C$$

 $c_L^{\text{spectrum}} = 3C \cdot C + 9c_1(B) \cdot C$

Only for M = 1 \Rightarrow subleading contributions for M > 1 tricky \Rightarrow look at T-duality to M-theory

Recap – The Story So Far

- Constructed general solution of Type IIB supergravity with
 - \rightarrow (0,4) SUSY in dual SCFT
 - $\rightarrow G_3 = 0$ and arbitrary τ
- @ Geometry:

$$AdS_3 \times S^3/\Gamma \times B_2$$

- Flux through (ample) curve in $B_2 \Rightarrow N$ D3-branes on C
- Oual SCFT
 - → worldvolume theory of string in 6d F-theory compactification

T-duality to M-theory

F-theory on Y_3 T-dual to M-theory on Y_3

General solution:

$$AdS_3 \times S^2 \times Y_3$$

with flux

$$G_4 = \operatorname{dvol}(S^2) \wedge J_{Y_3}$$

(See [Colgain, Wu, Yavartanoo])

 J_{Y_3} is Kahler form on Y_3 Poincaré dual to divisor

$$MB + N\widehat{C}$$

T-duality to M-theory

M5-branes on
$$\mathbb{R}^{1,1} \times P$$

$$P \in |MB + N\hat{C}|$$

N D3-branes on $C \longleftrightarrow N$ M5-branes on \widehat{C} M KK monopoles $\longleftrightarrow M$ M5-branes on B

See also [Bena, Diaconescu, Florea]

$$\begin{split} \widehat{C} \cdot \widehat{C} \cdot \widehat{C} &= 0 \\ \Rightarrow \text{divisor } \widehat{C} \text{ not ample, not Poincar\'e dual to K\"ahler form} \\ \Rightarrow \text{no AdS dual to string from M5-branes wrapping } \widehat{C} \end{split}$$

Central Charges from M-theory

KK monopoles now M5-branes on B

ightarrow Brown–Henneaux for holographic central charges for all M

$$c_R^{\text{M-th}} = 3N^2MC \cdot C + 3N(2 - M^2)c_1(B) \cdot C$$

$$c_L^{\text{M-th}} = 3N^2MC \cdot C + 3N(4 - M^2)c_1(B) \cdot C$$
Matches c_{PJ}^{IIB} for $M = 1$

Includes both leading and subleading orders in N

- \rightarrow also subsubleading \rightarrow center of mass contributions
 - \rightarrow not discussed today (but agrees with microscopic constructions)

Microscopic Constructions

Self-dual Strings

D3-branes on C

- \rightarrow self-dual strings (coupled to self-dual 2-form B) in 6d
 - \rightarrow anomaly polynomial known [Berman, Harvey], [Shimizu, Tachikawa] see also [CL, Schäfer-Nameki, Weigand]

$$I_4^{\text{SDS}} = -\frac{1}{24}p_1(T)\left[6Nc_1(B)\cdot C\right] + c_2(R)\left[\frac{1}{2}N^2C\cdot C + \frac{1}{2}Nc_1(B)\cdot C\right] + \cdots$$

Superconformal algebra relation

$$c_R = 6k_R = 3N^2C \cdot C + 3Nc_1(B) \cdot C$$

Gravitational anomaly

$$c_L - c_R = 6Nc_1(B) \cdot C$$

Microscopic Constructions

M5-brane Anomaly Inflow

Anomaly polynomial for N M5-branes [(Freed,) Harvey, Minasian, Moore]

$$I_8[N] = NI_8[1] + \frac{1}{24}(N^3 - N)p_2(\mathcal{N})$$

$$I_8[1] = \frac{1}{48} \left[p_2(\mathcal{N}) - p_2(TW) + \frac{1}{4}(p_1(TW) - p_1(\mathcal{N}))^2 \right]$$

Integrate over complex surface P (say $MB + N\hat{C}$)

$$I_4^{M5}[P] = -\frac{1}{24}p_1(W_2)\left[\frac{1}{2}c_2(Y_3)\cdot P\right] + p_1(\mathcal{N}_3)\left[\frac{1}{6}P\cdot P\cdot P\right] + \cdots$$

Central charges $(P = MB + N\hat{C} \text{ ample})$ [Maldacena, Strominger, Witten]

$$c_R = 6k_3 = 3N^2MC \cdot C + (2 - M^2)Nc_1(B) \cdot C$$

 $c_L - c_R = 2N(4 - M^2)c_1(B) \cdot C$

Summary of (0,4) Solution

Construct general AdS₃ solution of IIB SUGRA with dual (0,4) SCFT

Computed holographic central charges (M=1)

$$c_R = 3N^2C \cdot C + 3Nc_1(B) \cdot C$$

$$c_L = 3N^2C \cdot C + 9Nc_1(B) \cdot C$$

Agrees with central charge computation from

- 11d supergravity
- Self-dual strings in 6d
- **3** M5-brane anomaly inflow
- Spectrum (for N=1)

Conclusions and Future Directions

- Started systematically exploring holographic constructions in F-theory varying axio-dilaton.
- Constructed AdS₃ solutions preserving (0, 2), (0, 4), and (2, 2) SUSY in dual CFT₂
 - \rightarrow what are the dual CFTs for (0,2), (2,2)?
- For (0,4) we obtained a microscopic understanding of the holographic constructions
 - \rightarrow what about $G_3 \neq 0 \rightarrow$ all AdS₃ solutions dual to (0,4)
- AdS duals to strings of minimial 6d SCFTs [del Zotto, Lockhart]
 - \rightarrow curve wrapped by D3-branes not ample