An exploration of threefold bases in F-theory
1510.04978 & upcoming work with W. Taylor

Yi-Nan Wang

CTP, MIT

String Pheno 2017; Jul. 6th, 2017
F-theory landscape program

Yi-Nan Wang
An exploration of threefold bases in F-theory
Classify distinct F-theory compactifications to 4D

F-theory compactification on an elliptic CY4 M, with complex threefold base B.

Our goal: explore large sets of (compact, smooth) bases; Characterize, Classify, Count.
F-theory compactification on an elliptic CY4 M, with complex threefold base B.

(1) Classify all the distinct bases
F-theory compactification on an elliptic CY4 M, with complex threefold base B.

(1) Classify all the distinct bases

(2) Classify distinct fibrations giving different gauge groups/matter spectrum
F-theory compactification on an elliptic CY4 M, with complex threefold base B.

(1) Classify all the distinct bases

(2) Classify distinct fibrations giving different gauge groups/matter spectrum

(3) Explore the ensemble of flux vacua (largest $\sim 10^{272,000}$)
F-theory compactification on an elliptic CY4 M, with complex threefold base B.

(1) Classify all the distinct bases

(2) Classify distinct fibrations giving different gauge groups/matter spectrum

(3) Explore the ensemble of flux vacua (largest $\sim 10^{272,000}$)

Our goal: explore large sets of (compact, smooth) bases; Characterize, Classify, Count.
Study the “non-Higgsable phase”, where the gauge groups on the base are minimal.
Characterization of bases

Study the “non-Higgsable phase”, where the gauge groups on the base are minimal.

In the Weierstrass form:

\[y^2 = x^3 + fx + g, \quad (1) \]

\(f \) and \(g \) are taken to be generic sections of \(\mathcal{O}(-4K_B) \), \(\mathcal{O}(-6K_B) \). They are polynomials with generic random coefficients, such that the discriminant \(\Delta \) vanish to lowest order over any locus.
Characterization of bases

Study the “non-Higgsable phase”, where the gauge groups on the base are minimal.

In the Weierstrass form:

\[y^2 = x^3 + fx + g, \]

(1)

\(f \) and \(g \) are taken to be generic sections of \(\mathcal{O}(-4K_B), \mathcal{O}(-6K_B) \). They are polynomials with generic random coefficients, such that the discriminant \(\Delta \) vanish to lowest order over any locus.

Another property: the number of complex structure moduli \(h^{3,1} \) of the elliptic CY4 is maximal.
Classification of 2D bases

• Minimal model program of complex surfaces: Enriques-Kodaira classification.

• Bases for elliptic CY3: rational surface & Enrique surface (Grassi 91’).

Classify rational surface B which can be a base of elliptic CY3 used in F-theory: Consequently blowing up P^2 and Hirzebruch surfaces F_0, \ldots, F_{12}.

Condition: In the generic fibration, (f, g) does not vanish to order $(4, 6)$ or higher on any cod-1 or cod-2 locus on B.

• Almost done: (Morrison, Taylor 12'; Martini, Taylor 14'; Taylor, YNW 15').
Classification of 2D bases

- Minimal model program of complex surfaces: Enriques-Kodaira classification.

- Bases for elliptic CY3: rational surface & Enrique surface (Grassi 91').

- Classify rational surface B which can be a base of elliptic CY3 used in F-theory:

Consequently blowing up \mathbb{P}^2 and Hirzebruch surfaces F_0, \cdots, F_{12}.
Classification of 2D bases

- Minimal model program of complex surfaces: Enriques-Kodaira classification.

- Bases for elliptic CY3: rational surface & Enrique surface (Grassi 91').

- Classify rational surface B which can be a base of elliptic CY3 used in F-theory:

 Consequently blowing up \mathbb{P}^2 and Hirzebruch surfaces F_0, \cdots, F_{12}.

- Condition: In the generic fibration, (f, g) does not vanish to order $(4, 6)$ or higher on any cod-1 or cod-2 locus on B.
Classification of 2D bases

- Minimal model program of complex surfaces: Enriques-Kodaira classification.

- Bases for elliptic CY3: rational surface & Enrique surface (Grassi 91').

- Classify rational surface B which can be a base of elliptic CY3 used in F-theory:

 Consequently blowing up \mathbb{P}^2 and Hirzebruch surfaces F_0, \cdots, F_{12}.

- Condition: In the generic fibration, (f, g) does not vanish to order $(4, 6)$ or higher on any cod-1 or cod-2 locus on B.

- Almost done: (Morrison, Taylor 12'; Martini, Taylor 14'; Taylor, YNW 15')
Classification of 3D bases

- Minimal model program of complex threefold is not finished.
- Bases for elliptic CY4: unknown.

Yi-Nan Wang
An exploration of threefold bases in F-theory
Classification of 3D bases

- Minimal model program of complex threefold is not finished.

- Bases for elliptic CY4: unknown.

- Try to construct rational 3D bases by blowing up something we know:

 Toric threefolds, e.g. \mathbb{P}^3.

Condition: (f, g) does not vanish to order $(4, 6)$ or higher on any cod-1 or cod-2 locus on B.

We allow terminal singularity on elliptic CY4, which may correspond to neutral chiral matter in the 4D supergravity (Arras, Grassi, Weigand 16').
Classification of 3D bases

- Minimal model program of complex threefold is not finished.

- Bases for elliptic CY4: unknown.

- Try to construct rational 3D bases by blowing up something we know:

 Toric threefolds, e.g. \mathbb{P}^3.

- Condition: (f, g) does not vanish to order $(4, 6)$ or higher on any cod-1 or cod-2 locus on B.

We allow terminal singularity on elliptic CY4, which may correspond to neutral chiral matter in the 4D supergravity (Arras, Grassi, Weigand 16').
Classification of 3D bases

- Minimal model program of complex threefold is not finished.
- Bases for elliptic CY4: unknown.
- Try to construct rational 3D bases by blowing up something we know:
 Toric threefolds, e.g. \(\mathbb{P}^3 \).
- Condition: \((f, g)\) does not vanish to order \((4, 6)\) or higher on any cod-1 or cod-2 locus on \(B\).
- We allow terminal singularity on elliptic CY4, which may correspond to neutral chiral matter in the 4D supergravity (Arras, Grassi, Weigand 16').
Toric threefolds

Gluing \mathbb{C}^3 together such that there is an action of complex torus $(\mathbb{C}^*)^3$.

Description: a fan in the lattice \mathbb{Z}^3: Σ with set of 3D, 2D, 1D cones.

- **1D ray:** v_i corresponds to divisor D_i; $z_i = 0$.

 $N(v_i) = h_1(B_i) + 3$.

- **2D cone:** $v_i v_j$ corresponds to curve $z_i = z_j = 0$.

- **3D cone:** $v_i v_j v_k$ corresponds to point $z_i = z_j = z_k = 0$.

$(0,0,1)$ $(1,0,0)$ $(0,1,0)$ $(-1,-1,-1)$

$z_1 = 0$ $z_2 = 0$ $z_3 = 0$ $z_4 = 0$

Yi-Nan Wang

An exploration of threefold bases in F-theory
Toric threefolds

Gluing \mathbb{C}^3 together such that there is an action of complex torus $(\mathbb{C}^*)^3$.

Description: a fan in the lattice \mathbb{Z}^3: Σ with set of 3D, 2D, 1D cones.

- 1D ray: v_i corresponds to divisor D_i; $z_i = 0$.
 $N(v_i) = h^{1,1}(B) + 3$.
- 2D cone: $v_i v_j$ corresponds to curve $z_i = z_j = 0$.
- 3D cone: $v_i v_j v_k$ corresponds to point $z_i = z_j = z_k = 0$.
Toric threefolds

Generators of holomorphic section m_p of line bundle $L = \sum_i a_i D_i \Leftrightarrow$ points p in the dual lattice \mathbb{Z}^3:

$$\{p \in \mathbb{Z}^3, \forall v_i, \langle p, v_i \rangle \geq -a_i \}.$$ \hspace{1cm} (2)

$$m_p = \prod_i z_i^{\langle p, v_i \rangle + a_i}$$ \hspace{1cm} (3)
Generators of holomorphic section m_p of line bundle $L = \sum_i a_i D_i \iff$ points p in the dual lattice \mathbb{Z}^3:

$$\{p \in \mathbb{Z}^3, \forall v_i, \langle p, v_i \rangle \geq -a_i\}. \quad (2)$$

$$m_p = \prod_i z_i^{\langle p, v_i \rangle + a_i} \quad (3)$$

Anti-canonical bundle $-K_B = \sum_i D_i$. Hence f and g are linear combinations of monomials in set \mathcal{F} and \mathcal{G}:

$$\mathcal{F} = \{p \in \mathbb{Z}^3, \forall v_i, \langle p, v_i \rangle \geq -4\}. \quad (4)$$

$$\mathcal{G} = \{p \in \mathbb{Z}^3, \forall v_i, \langle p, v_i \rangle \geq -6\}. \quad (5)$$
(1) Blow up a point $v_i v_j v_k$: add another ray $\tilde{v} = v_i + v_j + v_k$.
(2) Blow up a curve $v_i v_j$: add another ray $\tilde{v} = v_i + v_j$.
Blow up/down toric threefolds

1. Blow up a point $v_i v_j v_k$: add another ray $\tilde{v} = v_i + v_j + v_k$.
2. Blow up a curve $v_i v_j$: add another ray $\tilde{v} = v_i + v_j$.

- The set $\mathcal{F} \& \mathcal{G}$ after the blow up is a subset of the previous ones.
- Blow up (4,6) curve does not change the set $\mathcal{F} \& \mathcal{G}$.
Random walk on the toric threefold landscape

- Start from \(\mathbb{P}^3 \), do a random sequence of 100,000 blow up/downs.
- Never pass through bases with cod-1 or cod-2 (4,6) singularities (excluding \(E_8 \) gauge group).
- In total 100 runs. \(h^{1,1}(B) = 1 \sim 120 \).
Random walk on the toric threefold landscape

- Start from \mathbb{P}^3, do a random sequence of 100,000 blow up/downs.
- Never pass through bases with cod-1 or cod-2 (4,6) singularities (excluding E_8 gauge group).
- In total 100 runs. $h^{1,1}(B) = 1 \sim 120$.

<table>
<thead>
<tr>
<th>Group</th>
<th>SU(2)</th>
<th>SU(3)</th>
<th>G_2</th>
<th>SO(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13.6</td>
<td>2.0</td>
<td>9.7</td>
<td>4×10^{-6}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>2.8</td>
<td>0.3</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Average number of non-Higgsable gauge group on a base.

- 76% of bases have $SU(3) \times SU(2)$ non-Higgsable cluster.
Estimation of the number of distinct bases

- Do a limited random walk with cap $h^{1,1}(B) \leq 7$, get the number of bases $N(7)$ and $N(2)$.
- We know there is 1 base with $h^{1,1}(B) = 1$: \mathbb{P}^3. 27 bases with $h^{1,1}(B) = 27$.
- The number of bases with $h^{1,1}(B) = 7$ is about $27 \times N(7)/N(2)$.
Estimation of the number of distinct bases

- Do a limited random walk with cap $h^{1,1}(B) \leq 7$, get the number of bases $N(7)$ and $N(2)$.
- We know there is 1 base with $h^{1,1}(B) = 1$: \mathbb{P}^3. 27 bases with $h^{1,1}(B) = 27$.
- The number of bases with $h^{1,1}(B) = 7$ is about $27 \times N(7)/N(2)$.

Total number $\sim 10^{48}$.
New Monte Carlo approach

The previous work does not include bases with cod-2 (4,6) locus, which has the two impacts:
New Monte Carlo approach

The previous work does not include bases with cod-2 (4,6) locus, which has the two impacts:
(1) Excluding bases with \(E_8 \) gauge group.
New Monte Carlo approach

The previous work does not include bases with cod-2 (4,6) locus, which has the two impacts:

(1) Excluding bases with E_8 gauge group.

(2) Excluding bases with larger $h^{1,1}(B)$/leading to CY4 with large $h^{1,1}(X)$.
New Monte Carlo approach

The previous work does not include bases with cod-2 (4,6) locus, which has the two impacts:

1. Excluding bases with E_8 gauge group.
2. Excluding bases with larger $h^{1,1}(B)$/leading to CY4 with large $h^{1,1}(X)$.

For the case of surface base/elliptic CY3, this exclude a large region.
• In this ongoing study, we consider the set of resolvable bases:
In this ongoing study, we consider the set of resolvable bases:

1. It has no cod-1 (4,6) locus.

We call the base without cod-2 (4,6) locus a good base.

Criterion of a resolvable base: the origin \((0, 0, 0)\) is contained in the Newton polytope of \(G\).
In this ongoing study, we consider the set of resolvable bases:

1. It has no cod-1 (4,6) locus.
2. It may contain cod-2 (4,6) locus.

We call the base without cod-2 (4,6) locus a good base.

Criterion of a resolvable base: the origin \((0, 0, 0)\) is contained in the Newton polytope of \(G\).
In this ongoing study, we consider the set of resolvable bases:

1. It has no cod-1 (4,6) locus.
2. It may contain cod-2 (4,6) locus.
3. After a sequence of blowing up the cod-2 (4,6) locus, we get a base with no cod-2 (4,6) locus.

We call the base without cod-2 (4,6) locus a good base.

Criterion of a resolvable base: the origin (0,0,0) is contained in the Newton polytope of G.

Yi-Nan Wang
An exploration of threefold bases in F-theory
In this ongoing study, we consider the set of resolvable bases:

1. It has no cod-1 (4,6) locus.
2. It may contain cod-2 (4,6) locus.
3. After a sequence of blowing up the cod-2 (4,6) locus, we get a base with no cod-2 (4,6) locus.

We call the base without cod-2 (4,6) locus a good base.
In this ongoing study, we consider the set of resolvable bases:

1. It has no cod-1 \((4,6)\) locus.
2. It may contain cod-2 \((4,6)\) locus.
3. After a sequence of blowing up the cod-2 \((4,6)\) locus, we get a base with no cod-2 \((4,6)\) locus.

We call the base without cod-2 \((4,6)\) locus a good base.

Criterion of a resolvable base: the origin \((0,0,0)\) is contained in the Newton polytope of \(G\).
In this ongoing study, we consider the set of **resolvable bases**:
1. It has no cod-1 (4,6) locus.
2. It may contain cod-2 (4,6) locus.
3. After a sequence of blowing up the cod-2 (4,6) locus, we get a base with no cod-2 (4,6) locus.

- We call the base without cod-2 (4,6) locus a **good base**.
- **Criterion of a resolvable base:** the origin $(0,0,0)$ is contained in the Newton polytope of G.

Yi-Nan Wang
An exploration of threefold bases in F-theory
New Monte Carlo approach

- In this approach, we cannot perform a random walk, because the good base is extremely rare among resolvable bases.
- Instead, we do a sequence of blow ups starting from a single base, e.g. P_3, until hitting the end point where one cannot blow up to get a resolvable base.
- According to the definition, the end point is always good. But most of the bases between h_1, 1_{1B}, 1_{B} are only resolvable.
- Assign weight factor to each base on each sequence to compute the total number of resolvable/good bases with each $h_{1_{1B}}$. B.

Yi-Nan Wang

An exploration of threefold bases in F-theory
New Monte Carlo approach

- In this approach, we cannot perform a random walk, because the good base is extremely rare among resolvable bases.
- Instead, we do a sequence of blow ups starting from a single base, e.g. \mathbb{P}^3, until hitting the **end point** where one cannot blow up to get a resolvable base.
• In this approach, we cannot perform a random walk, because the good base is extremely rare among resolvable bases.

• Instead, we do a sequence of blow ups starting from a single base, e.g. \mathbb{P}^3, until hitting the end point where one cannot blow up to get a resolvable base.

• According to the definition, the end point is always good. But most of the bases between $h^{1,1}(B) \sim 10$ and the end point are only resolvable.
• In this approach, we cannot perform a random walk, because the good base is extremely rare among resolvable bases.

• Instead, we do a sequence of blow ups starting from a single base, e.g. \mathbb{P}^3, until hitting the end point where one cannot blow up to get a resolvable base.

• According to the definition, the end point is always good. But most of the bases between $h^{1,1}(B) \sim 10$ and the end point are only resolvable.

• Assign weight factor to each base on each sequence to compute the total number of resolvable/good bases with each $h^{1,1}(B)$.
• In the recent work by J. Halverson, C. Long and B. Sung, a constructive algorithm gives $> 10^{755}$ bases.
In the recent work by J. Halverson, C. Long and B. Sung, a constructive algorithm gives $> 10^{755}$ bases.

(1) They were counting resolvable bases, generally have cod-2 $(4,6)$ locus. The notion of gauge group?

Yi-Nan Wang
An exploration of threefold bases in F-theory
• In the recent work by J. Halverson, C. Long and B. Sung, a constructive algorithm gives $>10^{755}$ bases.

(1) They were counting resolvable bases, generally have cod-2 (4,6) locus. The notion of gauge group?

(2) We are considering more general, arbitrary blow ups. They considered blow ups of points before blow ups of curves.
• In the recent work by J. Halverson, C. Long and B. Sung, a constructive algorithm gives $> 10^{755}$ bases.

(1) They were counting resolvable bases, generally have cod-2 (4,6) locus. The notion of gauge group?

(2) We are considering more general, arbitrary blow ups. They considered blow ups of points before blow ups of curves.

(3) We can consider more general starting point bases with non-Higgsable clusters.
New results

- The distribution of resolvable bases centralized at very large $h^{1,1} \sim 4,000$.
- The total number of resolvable bases $\sim 10^{1,700}$, bigger than the number 10^{755} in 1706.02299 by Halverson, Long and Sung.
New results

- The distribution of resolvable bases centralized at very large $h^{1,1} \sim 4,000$.
- The total number of resolvable bases $\sim 10^{1,700}$, bigger than the number 10^{755} in 1706.02299 by Halverson, Long and Sung.
New results

- The good bases form discrete “peaks” with certain value of $h^{1,1}(B)$.
New results

- The good bases form discrete “peaks” with certain value of $h^{1,1}(B)$.

- The total number of good bases $\sim 10^{240}$, almost entirely contributed by a single peak $h^{1,1}(B) = 2591$. The fraction of other bases $< 10^{-13}$.
New results

- The good bases form discrete “peaks” with certain value of $h^{1,1}(B)$.

- The total number of good bases $\sim 10^{240}$, almost entirely contributed by a single peak $h^{1,1}(B) = 2591$. The fraction of other bases $< 10^{-13}$.
- Autocracy. Similar story happens in the flux vacua story (YNW, Taylor 15’), where one geometry with $10^{272,000}$ flux vacua dominates.
New results

• The gauge groups are almost always $E_8^a \times F_4^b \times G_2^c \times SU(2)^d$. $SU(3)$ and $SO(8)$ seldom appears.

After computing $h_{1,1}(X)$, $h_{3,1}(X)$ over the end point bases B, we found that they resemble the mirror of simple elliptic CY4s over simple bases.

(1) For the bases with $h_{1,1}(B) = 2303$, $h_{1,1}(X) = 3878$, $h_{3,1}(X) = 2$: mirror of generic elliptic CY4 over P^3.

(2) For the bases with $h_{1,1}(B) = 2591$, $h_{1,1}(X) = 4358$, $h_{3,1}(X) = 3$: mirror of generic elliptic CY4 over generalized Hirzebruch threefold \tilde{F}_3.

• The end points are not random, but they are not related by flop either. Give rise to the same CY4?
New results

- The gauge groups are almost always $E_8^a \times F_4^b \times G_2^c \times SU(2)^d$. $SU(3)$ and $SO(8)$ seldom appears.
- After computing $h^{1,1}(X)$, $h^{3,1}(X)$ of X over the end point bases B, we found that they resemble the mirror of simple elliptic CY4s over simple bases.
New results

• The gauge groups are almost always $E_8^a \times F_4^b \times G_2^c \times SU(2)^d$. $SU(3)$ and $SO(8)$ seldom appears.

• After computing $h^{1,1}(X)$, $h^{3,1}(X)$ of X over the end point bases B, we found that they resemble the mirror of simple elliptic CY4s over simple bases.

(1) For the bases with $h^{1,1}(B) = 2303$, $h^{1,1}(X) = 3878$, $h^{3,1}(X) = 2$: mirror of generic elliptic CY4 over \mathbb{P}^3.

Yi-Nan Wang
An exploration of threefold bases in F-theory
New results

- The gauge groups are almost always $E_8^a \times F_4^b \times G_2^c \times SU(2)^d$. $SU(3)$ and $SO(8)$ seldom appears.
- After computing $h^{1,1}(X)$, $h^{3,1}(X)$ of X over the end point bases B, we found that they resemble the mirror of simple elliptic CY4s over simple bases.
 1. For the bases with $h^{1,1}(B) = 2303$, $h^{1,1}(X) = 3878$, $h^{3,1}(X) = 2$: mirror of generic elliptic CY4 over \mathbb{P}^3.
 2. For the bases with $h^{1,1}(B) = 2591$, $h^{1,1}(X) = 4358$, $h^{3,1}(X) = 3$: mirror of generic elliptic CY4 over generalized Hirzebruch threefold \tilde{F}_3.
New results

• The gauge groups are almost always $E_8^a \times F_4^b \times G_2^c \times SU(2)^d$. $SU(3)$ and $SO(8)$ seldom appear.

• After computing $h^{1,1}(X)$, $h^{3,1}(X)$ of X over the end point bases B, we found that they resemble the mirror of simple elliptic CY4s over simple bases.

1. For the bases with $h^{1,1}(B) = 2303$, $h^{1,1}(X) = 3878$, $h^{3,1}(X) = 2$: mirror of generic elliptic CY4 over \mathbb{P}^3.

2. For the bases with $h^{1,1}(B) = 2591$, $h^{1,1}(X) = 4358$, $h^{3,1}(X) = 3$: mirror of generic elliptic CY4 over generalized Hirzebruch threefold \tilde{F}_3.

• The end points are not random, but they are not related by flop either. Give rise to the same CY4?
(1) Digging data, finding patterns by deep learning?
(1) Digging data, finding patterns by deep learning?

(2) Generate the ensemble of general non-toric threefold bases.
Outlooks

(1) Digging data, finding patterns by deep learning?

(2) Generate the ensemble of general non-toric threefold bases.
 • Preliminary results: the number of non-toric curves one can blow up grows exponentially with $h^{1,1}(B)$, at least for small $h^{1,1}(B)$.

Thanks!

Yi-Nan Wang
An exploration of threefold bases in F-theory
(1) Digging data, finding patterns by deep learning?

(2) Generate the ensemble of general non-toric threefold bases.

- Preliminary results: the number of non-toric curves one can blow up grows exponentially with $h^{1,1}(B)$, at least for small $h^{1,1}(B)$.
- Total number of non-toric resolvable bases $\gg 10^{300,000}$?
- Total number of good bases?
Outlooks

(1) Digging data, finding patterns by deep learning?

(2) Generate the ensemble of general non-toric threefold bases.
 • Preliminary results: the number of non-toric curves one can blow up grows exponentially with $h^{1,1}(B)$, at least for small $h^{1,1}(B)$.
 • Total number of non-toric resolvable bases $\gg 10^{300,000}$?
 • Total number of good bases?

Thanks!