An exploration of threefold bases in F-theory 1510.04978 & upcoming work with W. Taylor

Yi-Nan Wang

CTP, MIT

String Pheno 2017; Jul. 6th, 2017

F-theory landscape program

F-theory compactification on an elliptic CY4 *M*, with complex threefold base *B*.

F-theory compactification on an elliptic CY4 M, with complex threefold base B.

(1) Classify all the distinct bases

F-theory compactification on an elliptic CY4 M, with complex threefold base B.

- (1) Classify all the distinct bases
- (2) Classify distinct fibrations giving different gauge groups/matter spectrum

F-theory compactification on an elliptic CY4 M, with complex threefold base B.

- (1) Classify all the distinct bases
- (2) Classify distinct fibrations giving different gauge groups/matter spectrum
- (3) Explore the ensemble of flux vacua (largest $\sim 10^{272,000}$)

F-theory compactification on an elliptic CY4 M, with complex threefold base B.

- (1) Classify all the distinct bases
- (2) Classify distinct fibrations giving different gauge groups/matter spectrum
- (3) Explore the ensemble of flux vacua (largest $\sim 10^{272,000}$)

Our goal: explore large sets of (compact, smooth) bases; Characterize, Classify, Count.

Characterization of bases

Study the "non-Higgsable phase", where the gauge groups on the base are minimal.

Characterization of bases

Study the "non-Higgsable phase", where the gauge groups on the base are minimal.

In the Weierstrass form:

$$y^2 = x^3 + fx + g, (1)$$

f and g are taken to be generic sections of $\mathcal{O}(-4K_B)$, $\mathcal{O}(-6K_B)$. They are polynomials with generic random coefficients, such that the discriminant Δ vanish to lowest order over any locus.

Characterization of bases

Study the "non-Higgsable phase", where the gauge groups on the base are minimal.

In the Weierstrass form:

$$y^2 = x^3 + fx + g, (1)$$

f and g are taken to be generic sections of $\mathcal{O}(-4K_B)$, $\mathcal{O}(-6K_B)$. They are polynomials with generic random coefficients, such that the discriminant Δ vanish to lowest order over any locus.

Another property: the number of complex structure moduli $h^{3,1}$ of the elliptic CY4 is maximal.

- Minimal model program of complex surfaces: Enriques-Kodaira classification.
- Bases for elliptic CY3: rational surface & Enrique surface (Grassi 91').

- Minimal model program of complex surfaces: Enriques-Kodaira classification.
- Bases for elliptic CY3: rational surface & Enrique surface (Grassi 91').
- ullet Classify rational surface B which can be a base of elliptic CY3 used in F-theory:

Consequently blowing up \mathbb{P}^2 and Hirzebruch surfaces $\mathbb{F}_0,\cdots,\mathbb{F}_{12}.$

- Minimal model program of complex surfaces: Enriques-Kodaira classification.
- Bases for elliptic CY3: rational surface & Enrique surface (Grassi 91').
- ullet Classify rational surface B which can be a base of elliptic CY3 used in F-theory:

Consequently blowing up \mathbb{P}^2 and Hirzebruch surfaces $\mathbb{F}_0,\cdots,\mathbb{F}_{12}.$

• Condition: In the generic fibration, (f,g) does not vanish to order (4,6) or higher on any cod-1 or cod-2 locus on B.

- Minimal model program of complex surfaces: Enriques-Kodaira classification.
- Bases for elliptic CY3: rational surface & Enrique surface (Grassi 91').
- ullet Classify rational surface B which can be a base of elliptic CY3 used in F-theory:

Consequently blowing up \mathbb{P}^2 and Hirzebruch surfaces $\mathbb{F}_0,\cdots,\mathbb{F}_{12}.$

- Condition: In the generic fibration, (f,g) does not vanish to order (4,6) or higher on any cod-1 or cod-2 locus on B.
- Almost done: (Morrison, Taylor 12'; Martini, Taylor 14'; Taylor, YNW 15')

- Minimal model program of complex threefold is not finished.
- Bases for elliptic CY4: unknown.

- Minimal model program of complex threefold is not finished.
- Bases for elliptic CY4: unknown.
- Try to construct rational 3D bases by blowing up something we know:

Toric threefolds, e.g. \mathbb{P}^3 .

- Minimal model program of complex threefold is not finished.
- Bases for elliptic CY4: unknown.
- Try to construct rational 3D bases by blowing up something we know:

Toric threefolds, e.g. \mathbb{P}^3 .

• Condition: (f,g) does not vanish to order (4,6) or higher on any cod-1 or cod-2 locus on B.

- Minimal model program of complex threefold is not finished.
- Bases for elliptic CY4: unknown.
- Try to construct rational 3D bases by blowing up something we know:

Toric threefolds, e.g. \mathbb{P}^3 .

- Condition: (f,g) does not vanish to order (4,6) or higher on any cod-1 or cod-2 locus on B.
- We allow terminal singularity on elliptic CY4, which may correspond to neutral chiral matter in the 4D supergravity(Arras, Grassi, Weigand 16').

Gluing \mathbb{C}^3 together such that there is an action of complex torus $(\mathbb{C}^*)^3$.

Gluing \mathbb{C}^3 together such that there is an action of complex torus $(\mathbb{C}^*)^3$.

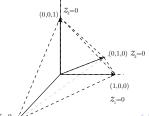
Description: a fan in the lattice \mathbb{Z}^3 : Σ with set of 3D, 2D, 1D cones.

• 1D ray: v_i corresponds to divisor D_i ; $z_i = 0$.

$$N(v_i) = h^{1,1}(B) + 3.$$

• 2D cone: $v_i v_i$ corresponds to curve $z_i = z_i = 0$.

• 3D cone: $v_i v_j v_k$ corresponds to point $z_i = z_j = z_k = 0$.



Generators of holomorphic section m_p of line bundle $L = \sum_i a_i D_i \Leftrightarrow \text{points } p \text{ in the dual lattice } \mathbb{Z}^3$:

$$\{p \in \mathbb{Z}^3, \forall v_i, \langle p, v_i \rangle \ge -a_i\}.$$
 (2)

$$m_p = \prod_i z_i^{\langle p, v_i \rangle + a_i} \tag{3}$$

Generators of holomorphic section m_p of line bundle $L = \sum_i a_i D_i \Leftrightarrow \text{points } p \text{ in the dual lattice } \mathbb{Z}^3$:

$$\{p \in \mathbb{Z}^3, \forall v_i, \langle p, v_i \rangle \ge -a_i\}.$$
 (2)

$$m_p = \prod_i z_i^{\langle p, v_i \rangle + a_i} \tag{3}$$

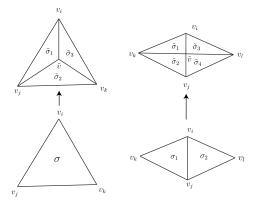
Anti-canonical bundle $-K_B = \sum_i D_i$. Hence f and g are linear combinations of monomials in set \mathcal{F} and \mathcal{G} :

$$\mathcal{F} = \{ p \in \mathbb{Z}^3, \forall v_i, \langle p, v_i \rangle \ge -4 \}. \tag{4}$$

$$\mathcal{G} = \{ p \in \mathbb{Z}^3, \forall v_i, \langle p, v_i \rangle \ge -6 \}.$$
 (5)

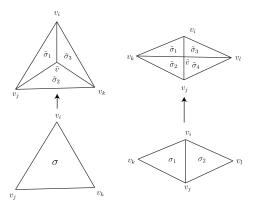
Blow up/down toric threefolds

- (1) Blow up a point $v_i v_j v_k$: add another ray $\tilde{v} = v_i + v_j + v_k$.
- (2) Blow up a curve $v_i v_j$: add another ray $\tilde{v} = v_i + v_j$.



Blow up/down toric threefolds

- (1) Blow up a point $v_i v_j v_k$: add another ray $\tilde{v} = v_i + v_j + v_k$.
- (2) Blow up a curve $v_i v_j$: add another ray $\tilde{v} = v_i + v_j$.



- ullet The set $\mathcal{F}\&\mathcal{G}$ after the blow up is a subset of the previous ones.
- Blow up (4,6) curve does not change the set $\mathcal{F}\&\mathcal{G}$.

Random walk on the toric threefold landscape

- Start from \mathbb{P}^3 , do a random sequence of 100,000 blow up/downs.
- Never pass through bases with cod-1 or cod-2 (4,6) singularities (excluding E_8 gauge group).
- In total 100 runs. $h^{1,1}(B) = 1 \sim 120$.

Random walk on the toric threefold landscape

- Start from \mathbb{P}^3 , do a random sequence of 100,000 blow up/downs.
- Never pass through bases with cod-1 or cod-2 (4,6) singularities (excluding E_8 gauge group).
- In total 100 runs. $h^{1,1}(B) = 1 \sim 120$.

SU(2)	SU(3)	G_2	SO(7)
13.6	2.0	9.7	4×10^{-6}
SO(8)	F_4	E ₆	E ₇
1.0	2.8	0.3	0.2

Average number of non-Higgsable gauge group on a base.

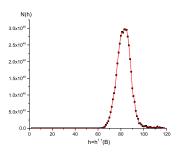
• 76% of bases have $SU(3) \times SU(2)$ non-Higgsable cluster.

Estimation of the number of distinct bases

- Do a limited random walk with cap $h^{1,1}(B) \le 7$, get the number of bases N(7) and N(2).
- We know there is 1 base with $h^{1,1}(B) = 1$: \mathbb{P}^3 . 27 bases with $h^{1,1}(B) = 27$.
- The number of bases with $h^{1,1}(B) = 7$ is about $27 \times N(7)/N(2)$.

Estimation of the number of distinct bases

- Do a limited random walk with cap $h^{1,1}(B) \le 7$, get the number of bases N(7) and N(2).
- We know there is 1 base with $h^{1,1}(B) = 1$: \mathbb{P}^3 . 27 bases with $h^{1,1}(B) = 27$.
- The number of bases with $h^{1,1}(B) = 7$ is about $27 \times N(7)/N(2)$.



Total number $\sim 10^{48}$.

The previous work does not include bases with cod-2 (4,6) locus, which has the two impacts:

The previous work does not include bases with cod-2 (4,6) locus, which has the two impacts:

(1) Excluding bases with E_8 gauge group.

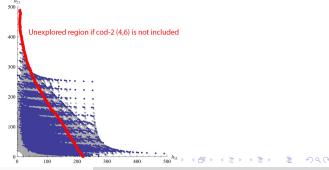
The previous work does not include bases with cod-2 (4,6) locus, which has the two impacts:

- (1) Excluding bases with E_8 gauge group.
- (2) Excluding bases with larger $h^{1,1}(B)/\text{leading}$ to CY4 with large $h^{1,1}(X)$.

The previous work does not include bases with cod-2 (4,6) locus, which has the two impacts:

- (1) Excluding bases with E_8 gauge group.
- (2) Excluding bases with larger $h^{1,1}(B)/\text{leading}$ to CY4 with large $h^{1,1}(X)$.

For the case of surface base/elliptic CY3, this exclude a large region.



• In this ongoing study, we consider the set of resolvable bases:

- In this ongoing study, we consider the set of resolvable bases:
- (1) It has no cod-1 (4,6) locus.

- In this ongoing study, we consider the set of resolvable bases:
- (1) It has no cod-1 (4,6) locus.
- (2) It may contain cod-2 (4,6) locus.

- In this ongoing study, we consider the set of resolvable bases:
- (1) It has no cod-1 (4,6) locus.
- (2) It may contain cod-2 (4,6) locus.
- (3) After a sequence of blowing up the cod-2 (4,6) locus, we get a base with no cod-2 (4,6) locus.

- In this ongoing study, we consider the set of resolvable bases:
- (1) It has no cod-1 (4,6) locus.
- (2) It may contain cod-2 (4,6) locus.
- (3) After a sequence of blowing up the cod-2 (4,6) locus, we get a base with no cod-2 (4,6) locus.
- We call the base without cod-2 (4,6) locus a good base.

- In this ongoing study, we consider the set of resolvable bases:
- (1) It has no cod-1 (4,6) locus.
- (2) It may contain cod-2 (4,6) locus.
- (3) After a sequence of blowing up the cod-2 (4,6) locus, we get a base with no cod-2 (4,6) locus.
- We call the base without cod-2 (4,6) locus a good base.
- Criterion of a resolvable base: the origin (0,0,0) is contained in the Newton polytope of \mathcal{G} .

- In this ongoing study, we consider the set of resolvable bases:
- (1) It has no cod-1 (4,6) locus.
- (2) It may contain cod-2 (4,6) locus.
- (3) After a sequence of blowing up the cod-2 (4,6) locus, we get a base with no cod-2 (4,6) locus.
- We call the base without cod-2 (4,6) locus a good base.
- Criterion of a resolvable base: the origin (0,0,0) is contained in the Newton polytope of \mathcal{G} .

• In this approach, we cannot perform a random walk, because the good base is extremely rare among resolvable bases.

- In this approach, we cannot perform a random walk, because the good base is extremely rare among resolvable bases.
- Instead, we do a sequence of blow ups starting from a single base, e.g. \mathbb{P}^3 , until hitting the end point where one cannot blow up to get a resolvable base.

- In this approach, we cannot perform a random walk, because the good base is extremely rare among resolvable bases.
- Instead, we do a sequence of blow ups starting from a single base, e.g. \mathbb{P}^3 , until hitting the end point where one cannot blow up to get a resolvable base.
- According to the definition, the end point is always good. But most of the bases between $h^{1,1}(B) \sim 10$ and the end point are only resolvable.

- In this approach, we cannot perform a random walk, because the good base is extremely rare among resolvable bases.
- Instead, we do a sequence of blow ups starting from a single base, e.g. \mathbb{P}^3 , until hitting the end point where one cannot blow up to get a resolvable base.
- According to the definition, the end point is always good. But most of the bases between $h^{1,1}(B) \sim 10$ and the end point are only resolvable.
- Assign weight factor to each base on each sequence to compute the total number of resolvable/good bases with each $h^{1,1}(B)$.

• In the recent work by J. Halverson, C. Long and B. Sung, a constructive algorithm gives $> 10^{755}$ bases.

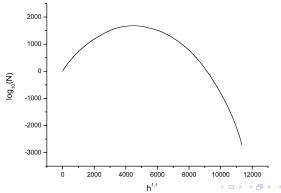
- In the recent work by J. Halverson, C. Long and B. Sung, a constructive algorithm gives $> 10^{755}$ bases.
- (1) They were counting resolvable bases, generally have cod-2 (4,6) locus. The notion of gauge group?

- In the recent work by J. Halverson, C. Long and B. Sung, a constructive algorithm gives $> 10^{755}$ bases.
- (1) They were counting resolvable bases, generally have cod-2 (4,6) locus. The notion of gauge group?
- (2) We are considering more general, arbitrary blow ups. They considered blow ups of points before blow ups of curves.

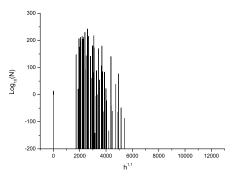
- In the recent work by J. Halverson, C. Long and B. Sung, a constructive algorithm gives $> 10^{755}$ bases.
- (1) They were counting resolvable bases, generally have cod-2 (4,6) locus. The notion of gauge group?
- (2) We are considering more general, arbitrary blow ups. They considered blow ups of points before blow ups of curves.
- (3) We can consider more general starting point bases with non-Higgsable clusters.

- \bullet The distribution of resolvable bases centralized at very large $\mathit{h}^{1,1} \sim 4,000.$
- \bullet The total number of resolvable bases $\sim 10^{1,700}$, bigger than the number 10^{755} in 1706.02299 by Halverson, Long and Sung.

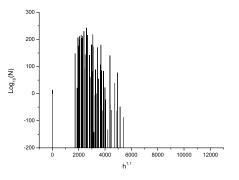
- ullet The distribution of resolvable bases centralized at very large $h^{1,1}\sim 4,000.$
- \bullet The total number of resolvable bases $\sim 10^{1,700}$, bigger than the number 10^{755} in 1706.02299 by Halverson, Long and Sung.



• The good bases form discrete "peaks" with certain value of $h^{1,1}(B)$.

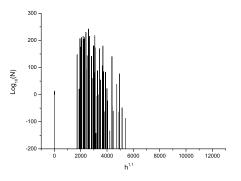


• The good bases form discrete "peaks" with certain value of $h^{1,1}(B)$.



• The total number of good bases $\sim 10^{240}$, almost entirely contributed by a single peak $h^{1,1}(B)=2591$. The fraction of other bases $<10^{-13}$.

• The good bases form discrete "peaks" with certain value of $h^{1,1}(B)$.



- \bullet The total number of good bases $\sim 10^{240}$, almost entirely contributed by a single peak $h^{1,1}(B) = 2591$. The fraction of other bases $< 10^{-13}$.
- Autocracy. Similar story happens in the flux vacua story (YNW, Taylor 15'), where one geometry with $10^{272,000}$ flux vacua dominates.

Yi-Nan Wang

• The gauge groups are almost always $E_8^a \times F_4^b \times G_2^c \times SU(2)^d$. SU(3) and SO(8) seldom appears.

- The gauge groups are almost always $E_8^a \times F_4^b \times G_2^c \times SU(2)^d$. SU(3) and SO(8) seldom appears.
- After computing $h^{1,1}(X)$, $h^{3,1}(X)$ of X over the end point bases B, we found that they resemble the mirror of simple elliptic CY4s over simple bases.

- The gauge groups are almost always $E_8^a \times F_4^b \times G_2^c \times SU(2)^d$. SU(3) and SO(8) seldom appears.
- After computing $h^{1,1}(X)$, $h^{3,1}(X)$ of X over the end point bases B, we found that they resemble the mirror of simple elliptic CY4s over simple bases.
- (1) For the bases with $h^{1,1}(B) = 2303$, $h^{1,1}(X) = 3878$, $h^{3,1}(X) = 2$: mirror of generic elliptic CY4 over \mathbb{P}^3 .

- The gauge groups are almost always $E_8^a \times F_4^b \times G_2^c \times SU(2)^d$. SU(3) and SO(8) seldom appears.
- After computing $h^{1,1}(X)$, $h^{3,1}(X)$ of X over the end point bases B, we found that they resemble the mirror of simple elliptic CY4s over simple bases.
- (1) For the bases with $h^{1,1}(B) = 2303$, $h^{1,1}(X) = 3878$,
- $h^{3,1}(X) = 2$: mirror of generic elliptic CY4 over \mathbb{P}^3 .
- (2) For the bases with $h^{1,1}(B) = 2591$, $h^{1,1}(X) = 4358$,
- $h^{3,1}(X)=3$: mirror of generic elliptic CY4 over generalized Hirzebruch threefold $\tilde{\mathbb{F}}_3$.

- The gauge groups are almost always $E_8^a \times F_4^b \times G_2^c \times SU(2)^d$. SU(3) and SO(8) seldom appears.
- After computing $h^{1,1}(X)$, $h^{3,1}(X)$ of X over the end point bases B, we found that they resemble the mirror of simple elliptic CY4s over simple bases.
- (1) For the bases with $h^{1,1}(B) = 2303$, $h^{1,1}(X) = 3878$,
- $h^{3,1}(X) = 2$: mirror of generic elliptic CY4 over \mathbb{P}^3 .
- (2) For the bases with $h^{1,1}(B)=2591$, $h^{1,1}(X)=4358$, $h^{3,1}(X)=3$: mirror of generic elliptic CY4 over generalized
- Hirzebruch threefold $\tilde{\mathbb{F}}_3$.
- The end points are not random, but they are not related by flop either. Give rise to the same CY4?

(1) Digging data, finding patterns by deep learning?

- (1) Digging data, finding patterns by deep learning?
- (2) Generate the ensemble of general non-toric threefold bases.

- (1) Digging data, finding patterns by deep learning?
- (2) Generate the ensemble of general non-toric threefold bases.
- Preliminary results: the number of non-toric curves one can blow up grows exponentially with $h^{1,1}(B)$, at least for small $h^{1,1}(B)$.

- (1) Digging data, finding patterns by deep learning?
- (2) Generate the ensemble of general non-toric threefold bases.
- Preliminary results: the number of non-toric curves one can blow up grows exponentially with $h^{1,1}(B)$, at least for small $h^{1,1}(B)$.
- Total number of non-toric resolvable bases $\gg 10^{300,000}$?
- Total number of good bases?

- (1) Digging data, finding patterns by deep learning?
- (2) Generate the ensemble of general non-toric threefold bases.
- Preliminary results: the number of non-toric curves one can blow up grows exponentially with $h^{1,1}(B)$, at least for small $h^{1,1}(B)$.
- Total number of non-toric resolvable bases $\gg 10^{300,000}$?
- Total number of good bases?

Thanks!

