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F-theory landscape program
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Classify distinct F-theory compactifications to 4D

F-theory compactification on an elliptic CY4 M, with complex

threefold base B.

(1) Classify all the distinct bases

(2) Classify distinct fibrations giving different gauge groups/matter

spectrum

(3) Explore the ensemble of flux vacua (largest ∼ 10272,000)

Our goal: explore large sets of (compact, smooth) bases;

Characterize, Classify, Count.
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Characterization of bases

Study the “non-Higgsable phase”, where the gauge groups on the

base are minimal.

In the Weierstrass form:

y2 = x3 + fx + g , (1)

f and g are taken to be generic sections of O(−4KB), O(−6KB).

They are polynomials with generic random coefficients, such that

the discriminant ∆ vanish to lowest order over any locus.

Another property: the number of complex structure moduli h3,1 of

the elliptic CY4 is maximal.
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Classification of 2D bases

• Minimal model program of complex surfaces: Enriques-Kodaira

classification.

• Bases for elliptic CY3: rational surface & Enrique surface (Grassi

91’).

• Classify rational surface B which can be a base of elliptic CY3

used in F-theory:

Consequently blowing up P2 and Hirzebruch surfaces F0, · · · ,F12.

• Condition: In the generic fibration, (f , g) does not vanish to

order (4, 6) or higher on any cod-1 or cod-2 locus on B.

• Almost done: (Morrison, Taylor 12’; Martini, Taylor 14’; Taylor, YNW 15’)
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Classification of 3D bases

• Minimal model program of complex threefold is not finished.

• Bases for elliptic CY4: unknown.

• Try to construct rational 3D bases by blowing up something we

know:

Toric threefolds, e.g. P3.

• Condition: (f , g) does not vanish to order (4, 6) or higher on any

cod-1 or cod-2 locus on B.

• We allow terminal singularity on elliptic CY4, which may
correspond to neutral chiral matter in the 4D supergravity(Arras,
Grassi, Weigand 16’).
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Toric threefolds

Gluing C3 together such that there is an action of complex torus

(C∗)3.

Description: a fan in the lattice Z3: Σ with set of 3D, 2D, 1D

cones.

• 1D ray: vi corresponds to divisor Di ; zi = 0.

N(vi ) = h1,1(B) + 3.

• 2D cone: vivj corresponds to curve zi = zj = 0.

• 3D cone: vivjvk corresponds to point zi = zj = zk = 0.

(0,0,1)

(1,0,0)

(0,1,0)

(-1,-1,-1)

z1=0

z2=0

z3=0

z4=0
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Toric threefolds

Generators of holomorphic section mp of line bundle

L =
∑

i aiDi ⇔ points p in the dual lattice Z3:

{p ∈ Z3,∀vi , 〈p, vi 〉 ≥ −ai}. (2)

mp =
∏
i

z
〈p,vi 〉+ai
i (3)

Anti-canonical bundle −KB =
∑

i Di . Hence f and g are linear

combinations of monomials in set F and G:

F = {p ∈ Z3,∀vi , 〈p, vi 〉 ≥ −4}. (4)

G = {p ∈ Z3,∀vi , 〈p, vi 〉 ≥ −6}. (5)
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Blow up/down toric threefolds

(1) Blow up a point vivjvk : add another ray ṽ = vi + vj + vk .

(2) Blow up a curve vivj : add another ray ṽ = vi + vj .

• The set F&G after the blow up is a subset of the previous ones.

• Blow up (4,6) curve does not change the set F&G.
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Random walk on the toric threefold landscape

• Start from P3, do a random sequence of 100,000 blow up/downs.

• Never pass through bases with cod-1 or cod-2 (4,6) singularities

(excluding E8 gauge group).

• In total 100 runs. h1,1(B) = 1 ∼ 120.

SU(2) SU(3) G2 SO(7)

13.6 2.0 9.7 4× 10−6

SO(8) F4 E6 E7

1.0 2.8 0.3 0.2

Average number of non-Higgsable gauge group on a base.

• 76% of bases have SU(3)× SU(2) non-Higgsable cluster.
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Estimation of the number of distinct bases

• Do a limited random walk with cap h1,1(B) ≤ 7, get the number

of bases N(7) and N(2).

• We know there is 1 base with h1,1(B) = 1: P3. 27 bases with

h1,1(B) = 27.

• The number of bases with h1,1(B) = 7 is about 27×N(7)/N(2).

0 20 40 60 80 100 120
0.0

5.0x1045

1.0x1046

1.5x1046

2.0x1046

2.5x1046

3.0x1046

N(h)

h=h1,1(B)

Total number ∼ 1048.
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New Monte Carlo approach

The previous work does not include bases with cod-2 (4,6) locus,

which has the two impacts:

(1) Excluding bases with E8 gauge group.

(2) Excluding bases with larger h1,1(B)/leading to CY4 with large

h1,1(X ).

For the case of surface base/elliptic CY3, this exclude a large region.
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New Monte Carlo approach

• In this ongoing study, we consider the set of resolvable bases:

(1) It has no cod-1 (4,6) locus.

(2) It may contain cod-2 (4,6) locus.

(3) After a sequence of blowing up the cod-2 (4,6) locus, we get a

base with no cod-2 (4,6) locus.

• We call the base without cod-2 (4,6) locus a good base.

• Criterion of a resolvable base: the origin (0, 0, 0) is contained in

the Newton polytope of G.
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New Monte Carlo approach

• In this approach, we cannot perform a random walk, because the

good base is extremely rare among resolvable bases.

• Instead, we do a sequence of blow ups starting from a single

base, e.g. P3, until hitting the end point where one cannot blow up

to get a resolvable base.

• According to the definition, the end point is always good. But

most of the bases between h1,1(B) ∼ 10 and the end point are

only resolvable.

• Assign weight factor to each base on each sequence to compute

the total number of resolvable/good bases with each h1,1(B).
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Relation with 1706.02299

• In the recent work by J. Halverson, C. Long and B. Sung, a

constructive algorithm gives > 10755 bases.

(1) They were counting resolvable bases, generally have cod-2

(4,6) locus. The notion of gauge group?

(2) We are considering more general, arbitrary blow ups. They

considered blow ups of points before blow ups of curves.

(3) We can consider more general starting point bases with

non-Higgsable clusters.
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New results

• The distribution of resolvable bases centralized at very large

h1,1 ∼ 4, 000.

• The total number of resolvable bases ∼ 101,700, bigger than the

number 10755 in 1706.02299 by Halverson, Long and Sung.
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New results

• The good bases form discrete “peaks” with certain value of h1,1(B).
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100

200

300

Lo
g 1
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• The total number of good bases ∼ 10240, almost entirely contributed

by a single peak h1,1(B) = 2591. The fraction of other bases < 10−13.

• Autocracy. Similar story happens in the flux vacua story (YNW, Taylor

15’), where one geometry with 10272,000 flux vacua dominates.
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• Autocracy. Similar story happens in the flux vacua story (YNW, Taylor

15’), where one geometry with 10272,000 flux vacua dominates.
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New results

• The gauge groups are almost always E a
8 × F b

4 × G c
2 × SU(2)d .

SU(3) and SO(8) seldom appears.

• After computing h1,1(X ), h3,1(X ) of X over the end point bases

B, we found that they resemble the mirror of simple elliptic CY4s

over simple bases.

(1) For the bases with h1,1(B) = 2303, h1,1(X ) = 3878,

h3,1(X ) = 2: mirror of generic elliptic CY4 over P3.

(2) For the bases with h1,1(B) = 2591, h1,1(X ) = 4358,

h3,1(X ) = 3: mirror of generic elliptic CY4 over generalized

Hirzebruch threefold F̃3.

• The end points are not random, but they are not related by flop

either. Give rise to the same CY4?
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Outlooks

(1) Digging data, finding patterns by deep learning?

(2) Generate the ensemble of general non-toric threefold bases.

• Preliminary results: the number of non-toric curves one can blow

up grows exponentially with h1,1(B), at least for small h1,1(B).

• Total number of non-toric resolvable bases � 10300,000?

• Total number of good bases?

Thanks!
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