LARGE FIELDS
AND
LATTICES

John Stout

based on work with

Ben Heidenreich, Cody Long, Liam McAllister, Matt Reece, and Tom Rudelius

String Pheno
July 6, 2017
Motivation

Does quantum gravity permit controlled, super-Planckian field displacements?

Axions provide a particularly bright lamppost to study under.

Axion field space is \(\mathbb{R}^N / \Gamma \), so the Lagrangian can be written as

\[
\mathcal{L} = -f^2 \delta_{ij} \partial_\mu \theta^i \partial^\mu \theta^j - \sum_{\mathbf{q} \in \Gamma} F_\mathbf{q} e^{i \delta_\mathbf{q}} \exp (2\pi i \mathbf{q} \cdot \theta) + \ldots
\]

[cf. talks by Blumenhagen, Flauger, Hebecker, Heidenreich, Herraez, Klaewer, McAllister, Montero, Ooguri, Rudelius, Shiu, Staessens, Valenzuela, Zoccarato]
Motivation

\[\mathcal{L} = -\frac{f^2}{2} \delta_{ij} \partial_\mu \theta^i \partial^\mu \theta^j - \sum_{\mathbf{q} \in \Gamma} F_\mathbf{q} \, e^{i\mathbf{q} \cdot \mathbf{\theta}} \exp \left(2\pi i \mathbf{q} \cdot \mathbf{\theta} \right) + \ldots \]

This potential is generated non-perturbatively, and (s)LWGC demands

\[F_\mathbf{q} \propto \exp \left(-\pi \mu |\mathbf{q}| \right) \quad \text{with} \quad \mu \sim M_{\text{pl}}/f. \]

Fundamental period is super-Planckian at small \(\mu \), but many terms are important!

Do these potentials admit large field ranges?

How do we understand the structure of these lattice sums?

[Heidenreich, Reece, Rudelius '16; Montero, Shiu, Soler '16]
\[V(\theta) = -\sum_{q \in \mathbb{Z}} e^{-2\pi \mu |q| + iq\theta} \]
\[V(\theta) = \sum_{q \in \mathbb{Z}} e^{-2\pi \mu |q|} + iq\theta + iq^{33} \]
Harmonic Variance

In this talk, we will study

\[V(\theta) = \sum_{q \in \Gamma} F_q e^{i\delta_q} \exp (2\pi i q \cdot \theta) \quad \langle F_q^2 \rangle = e^{-2\pi |q|} \quad \delta_q \in [0, 2\pi) \]

Useful measure is the variance in the \(n \)-th harmonic along the \(\bar{e} \) direction,

\[\sigma_n^2 = \sum_{q \in \Gamma, q \cdot \bar{e} = n} e^{-2\pi |q|} \rightarrow V(\theta \bar{e}) \sim \sum_{n=0}^{\infty} \mathcal{N}(0, \sigma_n^2) \times \cos (2\pi n \theta) \]

How do we investigate small \(\mu \)?

Can we find a better representation of these sums?

[Heidenreich, Long, McAllister, Reece, Rudelius, JS]
We can use Poisson resummation to improve convergence.

\[\sum_{q \in \Gamma} f(q) = \sum_{\tilde{q} \in \Gamma^*} \hat{f}(q) \]
Can resum the entire lattice, or sublattices.

\[
\sum_{\mathbf{q} \in \Gamma} f(\mathbf{q}) = \sum_{\bar{\mathbf{q}} \in \gamma} \sum_{\mathbf{q} \in \Gamma / \gamma} \hat{f}_\gamma(\mathbf{q}; \bar{\mathbf{q}})
\]

Which sublattice resummation yields the most truncatable sum?
Warmup

Can rewrite our sum to remove the constraint,

\[\sigma_n^2 = \sum_{q \in \Gamma/e} e^{-2\pi \mu|q + n\mathbf{e}|} \]

This particular sum is complicated—not obvious when resummation helps.

As a warmup, consider the **Siegel theta function**,

\[\Theta_{pq}(\mathbf{z}|\Omega) = \sum_{\mathbf{k} \in \mathbb{Z}^N} e^{\pi i (\mathbf{k} + \mathbf{p})^\top \Omega (\mathbf{k} + \mathbf{p}) + 2\pi i (\mathbf{k} + \mathbf{p}) \cdot (\mathbf{z} + \mathbf{q})} \]

Riemann matrix, \(\Omega \), encodes the structure of lattice.

\[\Theta_{00}(0|\mu \mathbf{Y}_{\Gamma}) = \Theta(0|\mu \mathbf{Y}_{\Gamma}) = \sum_{\mathbf{q} \in \Gamma} e^{-\pi \mu|\mathbf{q}|^2} \]
Siegel’s Fundamental Domain

Each Riemann matrix Ω has a representative

$$\Omega' = (A\Omega + B)(C\Omega + D)^{-1} \quad \left(\begin{array}{cc} A & B \\ C & D \end{array} \right) \in \text{Sp}(2N, \mathbb{Z})$$

with “maximal imaginary part,” called Ω’s representative in the **Siegel fundamental domain**.

$$\Theta_{\tilde{p}\tilde{q}}(0, \Omega') = k \sqrt{\det(C\Omega + D)} \Theta_{pq}(0, \Omega)$$

In this language, the transformation $B = -1$ and $C = 1$ corresponds to Poisson resummation of the entire lattice.

Optimal representation is solved by finding Siegel representative!

[cf. Frauendiener, Jaber, Klein ’17; Deconinck, Heil, Bobenko, Hoeij, Schmies, ’02]
In one dimension, this reduces to something very familiar.

Siegel theta reduces to a Jacobi theta, with lattice parameter $\tau = i \mu b^2$.

Optimal truncation determined by τ’s representative in $SL(2, \mathbb{Z})$ fundamental domain.

$$\theta_3(0| i \mu b^2) = \begin{cases}
\theta_3(0| i \mu b^2) & \mu b^2 \geq 1 \\
(\mu b^2)^{-1/2} \theta_3(0| \frac{i}{\mu b^2}) & \mu b^2 \leq 1
\end{cases}$$
Summation to Siegel

Which sublattice do we resum?
Relate harmonic variance to Siegel’s Θ!

$$e^{-2\pi \mu |q|} = \mu \int_0^\infty \frac{dt}{t^{3/2}} e^{-\pi \mu^2 t^{-1} - \pi q^2 t}$$

$$\sigma_n^2 = \sum_{q \in \Gamma/e} e^{-2\pi \mu |q + n\bar{e}|}$$

$$\sigma_n^2 = \mu \int_0^\infty dt \frac{1}{t^{3/2}} \exp \left[-\pi \left(\frac{\mu^2}{t} + n^2 e_\perp^2 t \right) \right] \Theta_{n\bar{e}\parallel 0} \left(0 | it \mathbf{Y}_{\Gamma/e} \right)$$

$$\Theta_{pq} (z | \Omega) = \sum_{k \in \mathbb{Z}^N} e^{\pi i (k+p)^\top \Omega (k+p) + 2\pi i (k+p) \cdot (z+q)}$$

[Heidenreich, Long, McAllister, Reece, Rudelius, JS]
Summation to Siegel

This cleaves problem in two: summand and lattice.

Integrating over kernel, whose peak depends on μ. Different summands correspond to different kernels.

$$\sigma_n^2 = \mu \int_0^\infty dt \frac{1}{t^{3/2}} \exp \left[-\pi \left(\frac{\mu^2}{t} + n^2 e_\perp^2 t \right) \right] \Theta_{n \bar{\epsilon} || 0} (0 | itY_{\Gamma/e})$$

Riemann matrix encodes lattice structure, and we integrate over all scalings of the lattice.

Integration interval is partitioned by representatives.

$$\sigma_n^2 = \sum_i \int_{\alpha_i} dt \, K_i(\mu, n, e_\perp^2, t) \Theta_{p_i q_i} (0 | \Omega_i(t))$$

[Heidenreich, Long, McAllister, Reece, Rudelius, JS]
Two Fields

\[
\sigma_n^2 = \frac{\mu}{|b|} \int_0^{b^{-2}} \frac{dt}{t^2} \exp \left[-\pi \left(\frac{\mu^2}{t} + n^2 e_\perp^2 t \right) \right] \Theta_{0,-n\bar{e}\parallel} \left(0 \left| \frac{i}{tb^2} \right. \right) \\
+ \mu \int_{b^{-2}}^{\infty} \frac{dt}{t^{3/2}} \exp \left[-\pi \left(\frac{\mu^2}{t} + ne_\perp^2 t \right) \right] \Theta_{ne\parallel,0} \left(0 \left| itb^2 \right. \right)
\]

John Stout jes554@cornell.edu
\[\sigma_n^2 = \sum_{\mathbf{q} \in \Gamma} e^{-2\pi \mu |\mathbf{q}|} \]
\[\sigma_n^2 = \sum_{q \in \Gamma} q \cdot \vec{e} = n e^{-2\pi \mu |q|} \]
Conclusions

- Representative in Siegel’s fundamental domain determines the optimal (most truncatable) representation of a lattice sum, and we may use this technology to study a large class of lattice sums.
- Can have suppressed higher harmonics at small μ (large f)?
- What structures are responsible for this suppression?
- What happens in higher-dimensional lattices?
Thanks!