Surprisingly Complex Punctures from a Dynamical System

Falk Hassler

in collaboration with

Jonathan J. Heckman

University of North Carolina at Chapel Hill

July 4, 2017
Theories of class S [Gaiotto, 2012]

6D $\mathcal{N} = (2, 0)$ SCFT

- IIB on $\mathbb{R}^{5,1} \times \mathbb{C}^2 / \Gamma$, $\Gamma \subset \text{SU}(2) \rightarrow \text{ADE-classification}$ [Witten, 1995]

- N M5-branes in flat space (A_N) [Strominger, 1996]
Theories of class S [Gaiotto, 2012]

6D $\mathcal{N} = (2, 0)$ SCFT
- IIB on $\mathbb{R}^{5,1} \times \mathbb{C}^2 / \Gamma$, $\Gamma \subset \text{SU}(2) \rightarrow \text{ADE-classification}$ [Witten, 1995]
- N M5-branes in flat space (A_N) [Strominger, 1996]

4D $\mathcal{N} = 2$ SCFT
Theories of class S [Gaiotto, 2012]

6D $\mathcal{N} = (2, 0)$ SCFT

- IIB on $\mathbb{R}^{5,1} \times \mathbb{C}^2 / \Gamma$, $\Gamma \subset \text{SU}(2) \rightarrow$ ADE-classification [Witten, 1995]

- N M5-branes in flat space (A_N) [Strominger, 1996]

4D $\mathcal{N} = 2$ SCFT

- gauge group G

- flavor symmetry from punctures on Σ
Constrains on punctures

- compactify 6D $\mathcal{N} = (2, 0)$ on S^1

- 5D $\mathcal{N}=2$ gauge theory with matter in bifundamental of G
Constrains on punctures

- compactify 6D $\mathcal{N} = (2, 0)$ on S^1

- 5D $\mathcal{N}=2$ gauge theory with matter in bifundamental of G

- maximally SUSY puncture \rightarrow 1/2 BPS equations for

$$\Sigma(t) = \frac{\Sigma}{t}, \quad Q(t) = \frac{Q}{t}, \quad \tilde{Q}(t) = 0$$

(in terms of $\mathcal{N}=1$ 4D superfields)

- results in Nahm pole equations [Nahm, 1980]

$$[\Sigma, Q] = Q, \quad [Q, Q^\dagger] = \Sigma$$
Constrains on punctures

- compactify 6D $\mathcal{N} = (2, 0)$ on S^1

- 5D $\mathcal{N}=2$ gauge theory with matter in bifundamental of G

- maximally SUSY puncture → 1/2 BPS equations for

$$\Sigma(t) = \frac{\Sigma}{t}, \quad Q(t) = \frac{Q}{t}, \quad \tilde{Q}(t) = 0$$

(in terms of $\mathcal{N}=1$ 4D superfields)

- results in Nahm pole equations [Nahm, 1980]

$$[\Sigma, Q] = Q, \quad [Q, Q^\dagger] = \Sigma$$

- Σ, Q, Q^\dagger are representations of $\mathfrak{su}(2)$
Generalization to $\mathcal{N}=1$?

- 6D $\mathcal{N}=(1,0)$ SCFT
- compactification Σ with punctures \rightarrow 4D $\mathcal{N}=1$ SCFTs

[Razamat, Vafa, and Zafrir, 2016]
Generalization to $\mathcal{N}=1$?

- 6D $\mathcal{N} = (1, 0)$ SCFT
- compactification Σ with punctures \rightarrow 4D $\mathcal{N}=1$ SCFTs [Razamat, Vafa, and Zafrir, 2016]

Challenges

- much more 6D $\mathcal{N} = (1, 0)$ than $\mathcal{N} = (2, 0)$ SCFTs [Heckman, Morrison, and Vafa, 2014]
- less constrained by SUSY
Generalization to $\mathcal{N}=1$?

- 6D $\mathcal{N} = (1, 0)$ SCFT
- compactification Σ with punctures \rightarrow 4D $\mathcal{N}=1$ SCFTs

Challenges

- much more 6D $\mathcal{N} = (1, 0)$ than $\mathcal{N} = (2, 0)$ SCFTs
- less constrained by SUSY

- use “simple” 6D $\mathcal{N}=(1,0)$ SCFT \mathcal{N} M5-branes probing ADE-singularity \mathbb{C}^2/Γ
- try to classify all punctures
- harder than you might think

[Heckman, Jefferson, Rudelius, and Vafa, 2016]
[Razamat, Vafa, and Zafrir, 2016]
[Heckman, Morrison, and Vafa, 2014]
Theories of Class S_{Γ}... [Heckman, Jefferson, Rudelius, and Vafa, 2016]

- stack of N M5-branes probing ADE-singularity \mathbb{C}^2/Γ
- compactification on $S^1 \rightarrow 5$D quiver gauge theory
Theories of Class S_{Γ}... [Heckman, Jefferson, Rudelius, and Vafa, 2016]

- stack of N M5-branes probing ADE-singularity \mathbb{C}^2/Γ
- compactification on $S^1 \rightarrow 5$D quiver gauge theory
- organized according to extended Dynkin diagrams

\hat{A}_k

\hat{D}_k

\hat{E}_6

similar for \hat{E}_7 and \hat{E}_8
...and their punctures

- again, maximally SUSY punctures \rightarrow 1/2 BPS equations for

$$\Sigma(t) = \frac{\Sigma}{t} \quad Q(t) = \frac{Q}{t} \quad \tilde{Q}(t) = \frac{\tilde{Q}}{t}$$

(in terms of $\mathcal{N}=1$ 4D superfields in covering space)
...and their punctures

- again, maximally SUSY punctures \rightarrow 1/2 BPS equations for

$$
\Sigma(t) = \frac{\Sigma}{t}, \quad Q(t) = \frac{Q}{t}, \quad \tilde{Q}(t) = \frac{\tilde{Q}}{t}
$$

(in terms of $\mathcal{N}=1$ 4D superfields in covering space)

- results in generalized Nahm pole equations

$$
[\Sigma, Q] = Q, \quad [Q, \tilde{Q}] = 0
$$

$$
[\Sigma, \tilde{Q}] = \tilde{Q}, \quad [Q, Q^\dagger] + [\tilde{Q}, \tilde{Q}^\dagger] = \Sigma
$$

plus invariance under Γ-action with

doublet $\left(\begin{array}{c} Q \\ \tilde{Q} \end{array} \right)$ and singlet Σ

[Heckman, Jefferson, Rudelius, and Vafa, 2016]
A closer look at \hat{A}_k quivers

- choose $\Gamma \ni \gamma = \text{diag}(1_N, \omega^1 1_N, \omega^2 1_N, \ldots, \omega^k 1_N)$

$$\gamma Q \gamma^\dagger = \omega Q \quad \gamma \tilde{Q} \gamma^\dagger = \omega^{-1} \tilde{Q} \quad \gamma \Sigma \gamma^\dagger = \Sigma$$
A closer look at \hat{A}_k quivers

- choose $\Gamma \ni \gamma = \text{diag}(1_N, \omega 1_N, \omega^2 1_N, \ldots, \omega^k 1_N)$

$$
\gamma Q \gamma^\dagger = \omega Q \\
\gamma \tilde{Q} \gamma^\dagger = \omega^{-1} \tilde{Q} \\
\gamma \Sigma \gamma^\dagger = \Sigma
$$

$$
\Sigma = \begin{pmatrix}
p(1) \\
\vdots \\
p(k)
\end{pmatrix} \\
Q = \begin{pmatrix}
q(1) \\
\vdots \\
q(k)
\end{pmatrix} \\
\tilde{Q} = \begin{pmatrix}
\tilde{q}(1) \\
\vdots \\
\tilde{q}(k-1)
\end{pmatrix}
$$

Class S Class S_{Γ} Dynamical system Summary
$N=1$ \hat{A}_k quivers and a dynamical system

- rewrite gen. Nahm pole eq. in terms of $q(i)$, $\tilde{q}(i)$ and $p(i)$

\[
\begin{align*}
[Q, \tilde{Q}] &= 0 \quad \Rightarrow \quad q(i + 1)\tilde{q}(i + 1) = q(i)\tilde{q}(i) \\
[Q, Q^\dagger] + [\tilde{Q}, \tilde{Q}^\dagger] &= \Sigma \quad \Rightarrow \quad x(i) - x(i - 1) = p(i) \\
[\Sigma, Q] &= Q \quad \Rightarrow \quad q(i)\left(p(i) - p(i + 1)\right) = q(i) \\
[\Sigma, \tilde{Q}] &= \tilde{Q} \quad \Rightarrow \quad -\tilde{q}(i)\left(p(i) - p(i + 1)\right) = \tilde{q}(i)
\end{align*}
\]

with $x(i) = q(i)q(i)^* - \tilde{q}(i)\tilde{q}(i)^*$
\(N=1 \hat{A}_k\) quivers and a dynamical system

- rewrite gen. Nahm pole eq. in terms of \(q(i), \tilde{q}(i)\) and \(p(i)\)

\[
\begin{align*}
[Q, \tilde{Q}] &= 0 \quad \rightarrow \quad q(i + 1)\tilde{q}(i + 1) = q(i)\tilde{q}(i) \\
[Q, Q^\dagger] + [\tilde{Q}, \tilde{Q}^\dagger] &= \Sigma \quad \rightarrow \quad x(i) - x(i - 1) = p(i) \\
[\Sigma, Q] &= Q \quad \rightarrow \quad q(i) \left(p(i) - p(i + 1) \right) = q(i) \\
[\Sigma, \tilde{Q}] &= \tilde{Q} \quad \rightarrow \quad -\tilde{q}(i) \left(p(i) - p(i + 1) \right) = \tilde{q}(i)
\end{align*}
\]

with \(x(i) = q(i)q(i)^* - \tilde{q}(i)\tilde{q}(i)^*\)

- \(Q\) is nilpotent, thus \(Q^k = 1_k \prod_{i=1}^{k} q(i) = 0 \quad \rightarrow \quad q(i)\tilde{q}(i) = 0\)

- knowing \(x(i)\) is sufficient to get \(q(i)\) and \(\tilde{q}(i)\)
\(N=1 \, \hat{A}_k \) quivers and a dynamical system

- Rewrite gen. Nahm pole eq. in terms of \(q(i), \tilde{q}(i) \) and \(p(i) \) with \(x(i) = q(i)q(i)^* - \tilde{q}(i)\tilde{q}(i)^* \)

- Discrete dynamical system

\[
f : \begin{pmatrix} p \\ x \end{pmatrix}(i + 1) = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} p \\ x \end{pmatrix}(i) - \text{sgn} \, x(i)
\]
\(N=1 \) \(\hat{A}_k \) quivers and a dynamical system

- rewrite gen. Nahm pole eq. in terms of \(q(i), \tilde{q}(i) \) and \(p(i) \) with \(x(i) = q(i)q(i)^* - \tilde{q}(i)\tilde{q}(i)^* \)

- discrete dynamical system

\[
f : \begin{pmatrix} p \\ x \end{pmatrix}(i + 1) = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} p \\ x \end{pmatrix}(i) - \text{sgn} x(i)
\]

- choose \(x(1), p(1) \) and all other \(x(i), p(i) \) are fixed

\(^1\) In general \(p(i + 1) \) is unconstrained if \(x(i) = 0 \). We choose \(p(i + 1) = p(i) \) to formally extend the dynamical system beyond this point.
Periodic orbits

- punctures = periodic orbits of length $k = |\Gamma|$
- strongly depends on the initial condition, e.g.
Periodic orbits

- punctures = periodic orbits of length $k = |\Gamma|$.
- strongly depends on the initial condition, e.g.

$$k = 100, \quad x(1) = -\frac{48}{15}, \quad p(1) = -\frac{49}{15}$$
Periodic orbits

- punctures = periodic orbits of length $k = |\Gamma|$
- strongly depends on the initial condition, e.g. $x(1) = -\frac{13}{4}, p(1) = -\frac{12}{4}$

$k = 100, x(1) = -\frac{48}{15}, p(1) = -\frac{49}{15}$
Periodic orbits

- punctures = periodic orbits of length $k = |\Gamma|$
- strongly depends on the initial condition, e.g. $x(1) = -\frac{13}{4}, p(1) = -\frac{12}{4}$

$k = 100, x(1) = -\frac{48}{15}, p(1) = -\frac{49}{15}$

- How to find the right initial conditions?
A tree of solutions

- periodic orbits of type $x(k) = 0$ organized in tree structure
A tree of solutions

- periodic orbits of type \(x(k) = 0 \) organized in tree structure

\[\text{Class S} \]

\[\text{Class } S_T \]

\[\text{Dynamical system} \]

\[\text{Summary} \]
and qualitative

- the tree of solutions is surprisingly complex
and qualitative

- the tree of solutions is surprisingly complex
and qualitative

- the tree of solutions is surprisingly complex
and qualitative

- the tree of solutions is surprisingly complex
- any pattern? e.g. self similar like Barnsley’s fern?
and qualitative

- the tree of solutions is surprisingly complex
- any pattern? e.g. self similar like Barnsley’s fern?
- even # of solutions has interesting structure
Summary

Even for the simplest class \mathcal{S}_Γ theories, the punctures show an amazingly rich structure compared to the $\mathcal{N} = 2$ case.

still lots of questions

- quantitative measure for complexity
- connection to spin chain
- statistical properties of solutions
- are the characteristic quantities for a puncture
- can we do more for $N > 1$, e.g. large N limit AdS/CFT