On micro-states of 4-d Black Holes and their stringy origin

Massimo Bianchi
Physics Dept and I.N.F.N.
University of Rome “Tor Vergata”

with J.F. Morales, L. Pieri, N. Zinnato

String Pheno 2017
Virginia Tech, Blacksburg VA

in memory of Yassen STANEV

July 4, 2017
A great physicist, a wonderful colleague, a tender husband and father ... we will miss him a lot
Plan of the Talk

- Motivations: GW, ‘Black Hole’ mergers, BH dark matter ...
- BH Information Paradox and the Fuzz-ball Proposal
- 4-d BH micro-state geometries from string amplitudes
- L, K and M solutions from open string condensates at intersecting D3-branes
- Multi-center ansatz, Bubble equations and ‘regularity’
- Summary, conclusions and future directions
First, second and third ... direct detections of Gravitational Waves
Inspiral, merger, ring down ...
Intermediate-mass ‘Black Holes’ (∼ 50\(M_\odot\))
Stellar BH’s or Primordial BH’s?
‘Black Holes’ as Dark Matter?

Can Dark Matter be made of ‘intermediate-mass’ (10-1000 M_\odot) primordial BH’s?... Probably Not [E. Mediavilla et al 2017]

Effect of distribution of masses on light from distant quasars: micro-lensing objects 0.5-4.5 $10^{-1}M_\odot$, only 20% of total matter such as ‘normal’ stellar matter
Information Paradox

- Pure state enters into a BH
- Emitted radiation is thermal (no information), but entangled with BH.
- Emitted particles do not depend on the state of earlier produced particles ...
- BH completely evaporates: there is nothing to be entangled with.
- ... only radiation in a mixed state \Rightarrow unitarity is lost!
The paradox cannot be solved by adding small corrections to the semi-classical computation and information cannot be recovered at the last stages of evaporation.

- Loss of unitarity [Hawking]

- Remnants, Baby Universe [Susskind]

- Non Local BH-radiation interactions [Maldacena-Susskind, Raju-Papadodimas]

- Hairs in the asymptotic structure of space-time [Hawking, Perry, Strominger; Dvali, Gomez, Lüst], ...

- The ‘horizon’ is no more in an “information free vacuum” [Lunin, Mathur]

We will explore the last possibility. Rather than only solving an ad hoc problem, this resolution emerges naturally from String Theory, fitting into a bigger picture for Quantum Gravity.

Every (BPS) Black-Hole micro-state is dual to a smooth, horizon-less (super)gravity solution. NO singularity (caveat) Quantum Gravity effects are horizon-sized due to huge phase space. Would-be horizon carries information ... the paradox is solved.

Far away fuzz-ball resembles a BH: every micro-state has the same asymptotic charges \((M, J, Q) \) as the would-be BH. The boundary of the region where micro-states differ from BH satisfy \(S \approx A/4 \). [S. Mathur (2005)]

Classical BH arises as “coarse-grained” description when only the geometry outside the “horizon” is taken into account.
BH’s in String Theory: the D1-D5-P paradigm

- Strong Coupling $g_s Q \gg 1$: ‘large’ BPS Black Hole in $D = 5$, small curvature at the horizon

$$ ds^2 = (H_1 H_5)^{-1/2}[-dt^2 + dy_5^2 + (H_P - 1)(dt + dy_5)^2] $$

$$ + (H_1 H_5)^{1/2}(dx_1^2 + \ldots dx_4^2) + H_1^{1/2} H_5^{-1/2}(dy_6^2 + \ldots dy_9^2) $$

Macroscopic (geometric) entropy $S_{BH} = 2\pi \sqrt{Q_1 Q_5 Q_P}$

- Weak Coupling $g_s Q \ll 1$: D-branes and open strings
 For $V_{T_4} \ll R_{S_1}^4$, $\mathcal{N} = (4, 4)$ $U(Q_1) \times U(Q_5)$ theory in $D = 2$
 with $c = n_{bose} + \frac{1}{2} n_{fermion} = 6Q_1 Q_5$, from $(1, 5)$ strings.
 For large charges, degeneracy given by C(H)ardy-Ramanujan
 formula: $d(Q_P) \sim e^{2\pi \sqrt{c Q_P}/6} \Rightarrow S_{micro} = \log d(Q_P)$

For BPS BH’s in $D = 5$: $S_{micro} = S_{MACRO}$ [Strominger, Vafa (1996)]

But what are the micro-states in the gravity picture?
D1-D5 Fuzz-ball

\[ds^2 = (H_1 H_5)^{-1/2}[-(dt + A_i dx^i)^2 + (dy_5 + B_i dx^i)^2] \]

\[+ (H_1 H_5)^{1/2} \sum_{i=1}^{4} dx_i^2 + (H_1 / H_5)^{1/2} \sum_{a=1}^{4} dy_a^2 \]

\[H_1 = 1 + \frac{Q_1}{\ell} \int_0^{\ell} \frac{dv}{|\vec{x} - \vec{F}(v)|^2} \quad H_5 = 1 + \frac{Q_1}{\ell} \int_0^{\ell} \frac{dv |\dot{F}(v)|^2}{|\vec{x} - \vec{F}(v)|^2} \]

\[A_i = \frac{Q_1}{\ell} \int_0^{\ell} \frac{dv \dot{F}_i(v)}{|\vec{x} - \vec{F}(v)|^2} \quad dB = \star_4 dA \quad v = t - y_5 \]

E.g. circle: \(F_1 = \cos(2\pi v / \ell), \quad F_2 = \sin(2\pi v / \ell), \quad F_3 = F_4 = 0 \)

Coordinate singularity along \(x^i = F^i(v) \), resolved: K-K monopole

Throat ends in a smooth “cap”, shape determined by \(F(v) \) profile

Entropy \(S_{\text{micro}} = 2\sqrt{2\pi} \sqrt{Q_1 Q_5} \) from CFT or from ‘geometric quantization’ of transverse ‘string’ oscillations (in F1-P frame)

Fuzz-ball proposal ‘proven’ in the 2 charge case, yet ‘small’ BH’s ‘Large’ BH’s require 3 charges in \(D = 5 \) or 4 charges in \(D = 4 \).
Part II
4-d BH micro-state geometries
from string amplitudes
Stringy Origin of 4d BPS Black Holes Micro-states

Enormous progress in 5-d [Bena, Giusto, Gibbons, Martinec, Russo, Shigemori, Warner, ...]
Much less known in 4-d!
Our goal: recover micro-state geometries from the underlying fundamental string theory description
We consider bound-states of 4 stacks of (orthogonally) intersecting D3-branes on T^6 in Type IIB ... dual to D2-D2-D2-D6 in Type IIA or M2-M5-P-KK6 in M-theory

<table>
<thead>
<tr>
<th>Brane</th>
<th>t</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>y_1</th>
<th>\tilde{y}_1</th>
<th>y_2</th>
<th>\tilde{y}_2</th>
<th>y_3</th>
<th>\tilde{y}_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D3_0$</td>
<td>$-$</td>
<td>$.$</td>
<td>$.$</td>
<td>$.$</td>
<td>$-$</td>
<td>$.$</td>
<td>$-$</td>
<td>$.$</td>
<td>$-$</td>
<td>$.$</td>
</tr>
<tr>
<td>$D3_1$</td>
<td>$-$</td>
<td>$.$</td>
<td>$.$</td>
<td>$.$</td>
<td>$-$</td>
<td>$.$</td>
<td>$-$</td>
<td>$.$</td>
<td>$-$</td>
<td>$.$</td>
</tr>
<tr>
<td>$D3_2$</td>
<td>$-$</td>
<td>$.$</td>
<td>$.$</td>
<td>$.$</td>
<td>$.$</td>
<td>$-$</td>
<td>$-$</td>
<td>$.$</td>
<td>$.$</td>
<td>$-$</td>
</tr>
<tr>
<td>$D3_3$</td>
<td>$-$</td>
<td>$.$</td>
<td>$.$</td>
<td>$.$</td>
<td>$.$</td>
<td>$-$</td>
<td>$-$</td>
<td>$.$</td>
<td>$-$</td>
<td>$.$</td>
</tr>
</tbody>
</table>

We derive a 1:1 relation between open string condensates and (super)gravity fields in the bulk for a large class of 4d BPS BH’s
Mixed Open-Closed String Amplitudes

micro-state geometries derived from mixed open-closed disk amplitudes, computing the emission rate of massless closed strings from open string condensates binding different stacks of branes.

Closed String Fields

\[g_{MN}, b_{MN}, C^{(4)}_{MNPQ} \]

Open String Fields

\[\mu^A, \phi^i \]
From String Amplitudes to Supergravity Fields

We work at leading order in g_s (disk), take all open string momenta equal (or tending) to zero and closed string momentum k only in non compact space directions.

$$\mathcal{A}(h, k) \propto \int \frac{d^{2+n}z}{V_{CKV}} \langle W_{\text{closed}}(h, k; z, \bar{z}) V_{\text{open}}(z_1) \ldots V_{\text{open}}(z_n) \rangle$$

Relation is well defined only if disk diagram cannot factorize via the exchange of open-string states
Choose ‘polarizations’ of open strings in such a way that NO factorization diagram be allowed
The deviation from flat space of a closed-string field

$$\delta \tilde{\phi}(k) = -\frac{i}{k^2} \frac{\delta \mathcal{A}(h, k)}{\delta h} \quad \rightarrow \quad \delta \phi(x) = \int \frac{d^3k}{(2\pi)^2} \tilde{\phi}(k) e^{ikx}$$
Supergravity Solution: the Love-ful Eight

Type IIB supergravity equations (with $\phi = g_s$, $C_0 = C_2 = B_2 = 0$)

$$R_{MN} = \frac{1}{4 \cdot 4!} F_{MP_1 P_2 P_3 P_4} F_{N P_1 P_2 P_3 P_4}$$

$$F_5 = *_{10} F_5$$

$$F_5 = dC_4$$

8 harmonic functions $H_a = \{V, L_I, K^I, M\}, I = 1, 2, 3$ (STU model)

$$ds^2 = -e^{2U} (dt + w)^2 + e^{-2U} |d\vec{x}|^2 + \sum_{I=1}^{3} \left[\frac{dy_I^2}{Ve^{2U} Z_I} + Ve^{2U} Z_I \tilde{e}_I^2 \right]$$

$$C_4 = \alpha_0 \cdot \tilde{e}_1 \cdot \tilde{e}_2 \cdot \tilde{e}_3 + \beta_0 \cdot dy_1 \cdot dy_2 \cdot dy_3 + \frac{\epsilon_{IJK}}{2} \left(\alpha_I \cdot dy_I \cdot \tilde{e}_J \cdot \tilde{e}_K + \beta_I \cdot \tilde{e}_I \cdot dy_J \cdot dy_K \right)$$

where $\cdot = \wedge$, ϵ_{IJK} (reduced) intersection form for 3-cycles in T^6,

$$Z_I = L_I + \left| \epsilon_{IJK} \right| \frac{K^J K^K}{V}$$

$$\mu = \frac{M}{2} + \frac{L_I K^I}{2 V} + \left| \epsilon_{IJK} \right| \frac{K^I K^J K^K}{6 V^2}$$

$$e^{-4U} = Z_1 Z_2 Z_3 V - \mu^2 V^2$$

$$*_{3} dw = V d\mu - \mu dV - VZ_1 d\frac{K^I}{V}$$

$$\tilde{e}_I = d\tilde{y}_I - \left(\frac{K^I}{V} - \frac{\mu}{Z_I} \right) dy_I$$
L solutions

L solutions are geometries that fall-off at infinity as Q_i/r, corresponding to a single stack of branes e.g.

$$V = L(x) \quad M = K^I = 0 \quad L_I = 1$$

At linear order in $\ell_{D3} \sim g_s \sqrt{\alpha'}$ one finds:

$$\delta g_{MN} dx^M dx^N = \frac{\delta L}{2} \left[dt^2 - \sum_{i=1}^{3} (dy_i^2 - dx_i^2 - d\tilde{y}_i^2) \right] + \ldots$$

$$\delta C_4 = -\delta L \wedge dt \wedge dy_1 \wedge dy_2 \wedge dy_3 + A \wedge d\tilde{y}_1 \wedge d\tilde{y}_2 \wedge d\tilde{y}_3 + \ldots$$

with $\delta L = L - 1$ and A both of order ℓ_{D3}. One can take:

$$L = 1 + \frac{\ell_{D3} N_0}{|x|} + \ldots \quad *_3 dL = dA$$
One-boundary Amplitude

Very well known result, modulo ‘untwisted’ open-string insertions

\[\mathcal{A}_{NS-NS,\xi(\phi)} = \left\langle c\bar{c}W_{NS-NS}^{(-1,-1)}(z, \bar{z})cV_{\xi(\phi)}^{(0)}(z_1) \right\rangle = i \ c_{NS} \ \text{tr}(ER)\xi(k) \]

where \(E = h + b \), \(R \) reflection matrix (+1 Neumann, −1 Dirichlet)

\[W_{NSNS}^{(-1,-1)}(z, \bar{z}) = c_{NS} \ (ER)_{MN} e^{-\varphi \psi^M} e^{ikX(z)} e^{-\varphi \psi^N} e^{ikRX(\bar{z})} \]

\[V_{\xi(\phi)}^{(0)}(z_1) = \sum_{n=0}^{\infty} \xi_{i_1...i_n} \partial X^{i_1}(z_1) \prod_{a=2}^{n} \int_{-\infty}^{\infty} \frac{dz_a}{2\pi} \partial X^{i_a}(z_a) \]

with \(\xi(\phi) = \sum_{n=0}^{\infty} \xi_{i_1...i_n} \phi^{i_1} \ldots \phi^{i_n} \) and \(z_a = \bar{z}_a \) (open strings)

The asymptotic deviation from the flat metric

\[\delta \tilde{g}_{MN}(k) = \left(-\frac{i}{k^2} \right) \sum_{n=0}^{\infty} \frac{\delta \mathcal{A}_{NS-NS,\phi^n}}{\delta h_{MN}} = c_{NS} \frac{\xi(k)}{k^2} \ (\eta R)_{MN} \]

After Fourier transform one finds agreement with SUGRA

\[\delta g_{MN} = \int \frac{d^3k}{(2\pi)^3} \delta \tilde{g}_{MN} = -\frac{1}{2} (\eta R)_{MN} \delta L(x) \quad \text{and} \quad \delta b_{MN} = 0 ! \]

In particular, for a single D3-brane at position \(x = a \):

\[\xi(\phi) \sim e^{ia\phi} \]
K solutions

K solutions are geometries that fall-off at infinity as $Q_i Q_j / r^2$ e.g.

$$K^3 = -M = K(x) \quad \mu = 0 \quad L_1 = V = 1 \quad K^1 = K^2 = 0$$

Associated to fermionic bilinears localized at the intersection of two branes and in general carry angular momentum.

At linear order in ℓ_{D3} one finds $(\ast_3 dw = -dK)$:

$$\delta g_{MN} dx^M dx^N = -2 w dt - 2 K dy_3 d\tilde{y}_3 + \ldots$$

$$\delta C_4 = (K dt \wedge dy_3 - w \wedge d\tilde{y}_3) \wedge (dy_1 \wedge d\tilde{y}_2 + d\tilde{y}_1 \wedge dy_2)$$

For example one can take

$$K \approx \frac{v_i x_i}{|x|^3} \quad w \approx \epsilon_{ijk} v_i \frac{x_j dx_k}{|x|^3}$$
Two-boundary Amplitude

\[\mathcal{A}_{\mu^2, \xi(\phi)}^{NS-NS} = \int d\tau^4 \langle c(z_1) V_{\bar{\mu}}(z_1) c(z_2) V_{\mu}(z_2) c(z_3) W(z_3, z_4) V_{\xi}(\phi) \rangle \]

where

\[V_{\bar{\mu}}(z_1) = \bar{\mu}^A e^{-\varphi/2} S_A \sigma_2 \sigma_3 \]

\[V_{\mu}(z_2) = \mu^B e^{-\varphi/2} S_B \sigma_2 \sigma_3 \]

\[\left\langle \text{tr} \bar{\mu}^{(A} \mu^{B)} \right\rangle = \frac{1}{3!} \nu^{MNP} \Gamma^{AB}_{MNP} \]

\[\mathcal{A}_{\mu^2, \xi(\phi)}^{NS-NS} = \frac{\xi(k)}{3!} (ER)_{MN} k_P \nu^{MNP} \]

with \(\nu^{MNP} \in 10 \) of \(\text{SO}(6) \) (NO 6!!) e.g. for \(\nu_{3y_3\tilde{y}_3} = -\nu_{12t} = 4\pi \nu \)

\[\delta g_{2t} = -\nu \frac{x_1}{|x|^3} \]

\[\delta g_{1t} = \nu \frac{x_2}{|x|^3} \]

\[\delta g_{y_3\tilde{y}_3} = -\nu \frac{x_3}{|x|^3} \]
M solutions

M solutions are geometries that fall-off at infinity as \(Q_1 Q_2 Q_3 Q_4 / r^3 \)
e.g.

\[
K^2 = M = M(x) \quad \mu = M \quad L_1 = V = 1 \quad K^1 = K^3 = 0
\]

\[
\delta g_{MN} dx^M dx^N = 2M \left(dy_1 d\tilde{y}_1 + dy_3 d\tilde{y}_3 \right) + \ldots
\]

\[
\delta C_4 = -M dt \wedge \left(dy_1 \wedge d\tilde{y}_2 \wedge dy_3 + d\tilde{y}_1 \wedge d\tilde{y}_2 \wedge d\tilde{y}_3 \right)
+ w_2 \wedge \left(dy_1 \wedge dy_2 \wedge dy_3 + d\tilde{y}_1 \wedge dy_2 \wedge d\tilde{y}_3 \right) + \ldots
\]

with \(w_2 = \ast_3 dM \)

In particular one can take the harmonic \(M \) to be a ‘quadru-pole’

\[
M \approx \nu_{ij} \frac{3 x_i x_j - \delta_{ij}|x|^2}{|x|^5}
\]
Four-Boundary Amplitude

Insertion of four fermions $\mu_{a,a+1}$ starting on D3-branes of type a and ending on D3-branes of type $a+1$ with $a = 0, 1, 2, 3 \text{ (mod 4)}$ Even if each intersection preserves $\mathcal{N} = 2$ SUSY (1/4 BPS), so that each fermion $\mu_{a,a+1}$ paired with its conjugate $\bar{\mu}_{a,a+1}$, whole configuration preserves only $\mathcal{N} = 1$ SUSY (1/8 BPS). The condensate is complex e.g. $\mu_1 \mu_2 \bar{\mu}_3 \bar{\mu}_4 \neq \bar{\mu}_1 \bar{\mu}_2 \mu_3 \mu_4$

$$\mathcal{A}_{\mu^4,\xi(\phi)}^{NS-NS} = \int dz d^2 w \langle cV_{\mu_1}(z_1) cV_{\mu_2}(z_2) V_{\bar{\mu}_3}(z=\bar{\bar{z}}) cV_{\bar{\mu}_4}(z_4) W_{NSNS}(w, \bar{w}) V_{\xi(\phi)} \rangle$$
Four-Boundary Amplitude

\[
\left\langle \text{tr} \mu_1^{(\alpha \mu_2)} \bar{\mu}_3^{(\bar{\alpha} \bar{\mu}_4)} \right\rangle = \frac{2\pi \nu^{ij}}{c_{\text{NS}} I_1} \sigma_i^{\alpha \bar{\alpha}} \bar{\sigma}_j^{\beta \bar{\beta}} \quad \nu^{ij} \in (3, 3) \text{ of } SU_L(2) \times SU_R(2)
\]

Need \(Z_2 \) twist field correlator on the boundary of the disk

\[
\left\langle \sigma_2(z_1)\sigma_2(z_2)\sigma_2(z_3)\sigma_2(z_4) \right\rangle = f \left(\frac{Z_{14}Z_{23}}{Z_{13}Z_{24}} \right) \left(\frac{Z_{13}Z_{24}}{Z_{12}Z_{23}Z_{34}Z_{41}} \right)^{1/4}
\]

where \(f(x) = \frac{\Lambda(x)}{\sqrt{F(x)F(1-x)}} \) with \(F(x) = 2 F_1(1/2, 1/2; 1; x) \) and

\[
\Lambda(x) = \sum n_1, n_2 \exp \left\{ -\frac{2\pi}{\alpha'} \left[\frac{F(1-x)}{F(x)} n_1^2 R_1^2 + \frac{F(x)}{F(1-x)} n_2^2 R_2^2 \right] \right\} \approx 1
\]

\[
\mathcal{A}_{\mu^4, \xi(\phi)}^{\text{NS-NS}} = \left[(ER)_{[11]} + (ER)_{[33]} \right] k_i k_j \nu^{ij} \xi(k)
\]

so that \(\delta \tilde{g}_{1\bar{1}} = \delta \tilde{g}_{3\bar{3}} = -2\pi i \xi(k) \nu^{ij} k_i k_j / k^2 \)

Agreement with SUGRA solution to leading order in \(\ell_{D3} \).
... Some speculations on the entropy

- Thanks to $\mathcal{N} = 2$ SUSY preserving $D3_a D3_b$ intersections, $D3^4$ more closely related than $D1D5P$ to $D1D5$ system. ‘Realistic’ four-charge case may turn out to be simpler than three-charge case!

- The number of disks with four different boundaries grows as $Q_1 Q_2 Q_3 Q_4 = \mathcal{I}_4$. One can attempt the calculation of the entropy via geometric quantization by introducing suitable profile-dependent harmonic functions, as in the D1-D5 case.

- A family of asymptotically $AdS_2 \times S^2 \times T^6$ geometries has been found and shown to be regular. Harmonic functions written in terms of an arbitrary profile [Lunin (2015)]

$$H(\vec{x}) = h_{\text{reg}}(\vec{x}) + \int_0^{2\pi} \frac{dv}{2\pi} \frac{1}{|\vec{x} - \vec{F}(v)|} \sqrt{1 + \frac{(\vec{x} - \vec{F}) \cdot \vec{A}(v)}{|\vec{x} - \vec{F}|^2}}$$

- For asymptotically flat solutions in 4d, no-go theorem: NO non-singular solutions in GR. Either include higher-derivative terms or get ‘generalised’ regularity in five or higher dimension.
Part III.
Multi-center ansatz, Bubble Equations boundary conditions and ‘regularity’
From 4 to 10 (or 11) dimensions and back: STU et cetera

4-dim $\mathcal{M}_{STU} = [SL(2, R)/U(1)]^3 \subset E_{7(+7)}/SU(8) = \mathcal{M}_{N=8}$

$L_{STU \sim U_1 U_2 U_3} = \frac{1}{16\pi G} \left(R_4 - \sum_{l=1}^{3} \frac{\partial_\mu U_l \partial^{\mu} \bar{U}_l}{2 \text{Im} U_l^2} - \frac{1}{4} F_a \mathcal{I}^{ab} F_b - \frac{1}{4} F_a \mathcal{R}^{ab} \tilde{F}_b \right)$

10-dim uplift

$ds^2_{10} = -e^{2U}(dt + w)^2 + e^{-2U}|d\vec{x}|^2 + \sum_{l=1}^{3} \left[\frac{dy_i^2}{Ve^{2U} Z_i} + Ve^{2U} Z_i \tilde{e}_i^2 \right]$

where $Z_i = L_i + \frac{|\epsilon_{IJK}|}{2} \frac{K^J K^K}{V}$, $\mu = \frac{M}{2} + \frac{L_i K^I}{2 V} + \frac{|\epsilon_{IJK}|}{6} \frac{K^I K^J K^K}{V^2}$ and $e^{-4U} = I_4(L_i, V, K^I, M) = Z_1 Z_2 Z_3 V - \mu^2 V^2 = L_1 L_2 L_3 V - K^1 K^2 K^3 M$

$+ \frac{1}{2} \sum_{I>J}^{3} K^I K^J L_I L_J - \frac{1}{2} MV \sum_{I=1}^{3} K^I L_I - \frac{1}{4} M^2 V^2 - \frac{1}{4} \sum_{I=1}^{3} (K^I)^2 L_I^2$

11-dim uplift $ds^2_{T^6} = \sum_{I=1}^{3} Z^{-1}_I (Z_1 Z_2 Z_3)^{\frac{1}{3}} (dy_i^2 + d\tilde{y}_i^2)$ and

$ds^2_{5} = -\frac{[dt + \mu(d\Psi + w_0) + w]^2}{(Z_1 Z_2 Z_3)^{\frac{2}{3}}} + (Z_1 Z_2 Z_3)^{\frac{1}{3}} \left[V^{-1}(d\Psi + w_0)^2 + V|d\vec{x}|^2 \right]$
Asymptotic geometry and charges

Using (asymptotic) Killing vectors (later on $16\pi G = 1$)

$$\mathcal{M} = \frac{1}{8\pi G} \int_{S^2_\infty} \star_4 d\xi(t), \quad J = -\frac{1}{16\pi G} \int_{S^2_\infty} \star_4 d\xi(\phi),$$

$$Q^a = \frac{1}{4\pi} \int_{S^2_\infty} (\mathcal{I}^{ab} \star_4 F_b - \mathcal{R}^{ab} F_b), \quad P_a = \frac{1}{4\pi} \int_{S^2_\infty} F_a$$

Boundary conditions and charges for orthogonal branes

$$V \approx 1 + \frac{v}{r} \quad L_I \approx 1 + \frac{\ell_I}{r} \quad K^I = M \approx 0$$

$$\mathcal{M} = v + \ell_1 + \ell_2 + \ell_3, \quad P = (v, 0, 0, 0), \quad Q = (0, \ell_1, \ell_2, \ell_3), \quad J = 0$$

Boundary conditions and charges for branes at angle

$$V \approx 1 + \frac{v}{r} \quad L_I \approx 1 + \frac{\ell_I}{r} \quad K^1 \approx g + \frac{k^1}{r} \quad K^2 \approx g \quad K^3 = M = 0$$

$$\mathcal{M} = v + \ell_1 + \ell_2 + \ell_3, \quad P = (v, -g(\ell_1 + \ell_2), 0, 0), \quad Q = (0, \ell_1, \ell_2, \ell_3), \quad J = 0$$
Micro-state geometries

Multi-center Taub-NUT ansatz \((r_i = |\vec{x} - \vec{x}_i|, \ i = 1, \ldots N) \)

[\text{Bena, Warner, Gibbons, Cvetic, Lu, Pope, ...}]

\[
V = v_0 + \sum_{i=1}^{N} \frac{q_i}{r_i} \quad L_I = \ell_{0I} + \sum_{i=1}^{N} \frac{\ell_{I,i}}{r_i}
\]

\[
K^I = k_0^I + \sum_{i=1}^{N} \frac{k_i^I}{r_i} \quad M = m_0 + \sum_{i=1}^{N} \frac{m_i}{r_i}
\]

Near each center, \(R^4 / Z_{|q_i|} \), asymptotically \(R^3 \times S_\psi^1 \)
Geometry factorises, i.e. regular in 5-d (!), if near the centers

\[
Z_I \big|_{r_i \approx 0} \approx \zeta_i^i \ (\text{finite}) \quad \text{and} \quad \mu \big|_{r_i \approx 0} \approx 0 \ (\text{zero})
\]

Absence of horizons and closed time-like curves requires

\[
Z_I V > 0 \quad \text{and} \quad e^{2U} > 0
\]

\(w \) closed exact form near the centres
Bubble equations

Z_i finite near the centers if

$$\ell_{I,i} = -\frac{1}{2} \frac{|\epsilon_{IJK}|}{q_i} k_i^J k_i^K, \quad m_i = \frac{k_i^1 k_i^2 k_i^3}{q_i^2}$$

μ vanishes near the centers if Bubble Equations are satisfied

$$\sum_{j=1}^{N} \frac{\Pi_{ij}}{r_{ij}} + v_0 \frac{k_i^1 k_i^2 k_i^3}{q_i^2} - \sum_{l=1}^{3} \ell_{0l} k_i^l - |\epsilon_{IJK}| \frac{k_0^l k_i^J k_i^K}{2 q_i} - m_0 q_i = 0$$

with $\Pi_{ij} = (q_i q_j)^{-2} \prod_{l=1}^{3} \left(k_i^l q_j - k_j^l q_i \right)$ and $r_{ij} = |\vec{x}_i - \vec{x}_j|$.

Bubble equations imply absence of pernicious Dirac-Misner strings

$$*_3 dw = \frac{1}{2} \sum_{i,j=1}^{N} \Pi_{ij} \left(\frac{1}{r_j} - \frac{1}{r_{ij}} \right) d \frac{1}{r_i} = \frac{1}{4} \sum_{i,j=1}^{N} \Pi_{ij} \omega_{ij}$$

with $\omega_{ij} = (\vec{n}_i + \vec{n}_{ij}) \cdot (\vec{n}_j - \vec{n}_{ij}) d\phi_{ij}/r_{ij}$ free of D-M strings along lines connecting two centers, since numerator vanishes there.
Scaling solutions

If the coefficients k_i^l satisfy

$$v_0 \ m_i - \sum_{l=1}^{3} \ell_{0l} \ k_i^l + k_0^l \ l_i - m_0 q_i = 0$$

invariance under rigid rescaling of the positions of the centres

$$\vec{x}_i \to \lambda \vec{x}_i$$

Multiplying (...) by the positions of the centers \vec{x}_i, the solution can be shown to carry zero angular momentum

$$\vec{J} = m_0 \ \vec{v}_2 - v_0 \ \vec{m}_2 + \ell_{0l} \ \vec{k}_2^l - k_0^l \ \vec{l}_{2l} = 0$$

in agreement with (Sen’s) expectations for individual micro-states
Fuzz-balls of orthogonal branes

Boundary conditions

\[\ell_{0I} = v_0 = 1 \quad m_0 = m = k_0^I = k^I = 0 \]

For \(q_i = 1 \) (to avoid orbifold singularities, for simplicity)

\[P_0 = N \quad , \quad Q_I = - \sum_{i=1}^{N} \frac{|\epsilon_{IJK}| k^J_i k^K_i}{2} \]

Bubble Equations (\(q_i = 1! \))

\[\sum_{j \neq i}^{N} \prod_{l=1}^{3} \frac{(k^I_i - k^I_j)}{r_{ij}} + k^1_i k^2_i k^3_i - \sum_{l=1}^{3} k^l_i = 0 \]

absence of horizons and of closed time-like curves requires

\[Z_I V > 0 \quad and \quad e^{2U} > 0 \]

Configurations with one or two centers fail to meet the BPS requirement \(Q_I > 0 \). Let us start (and end) with three centers
3-center case \(N = 3 = P_0 \)

\[
k'_i = \begin{pmatrix} -n_1 n_2 & -n_1 n_3 & n_1 (n_2 + n_3) \\ n_3 & n_2 & -n_2 - n_3 \\ -n_4 & n_4 & 0 \end{pmatrix}
\]

scaling solutions: \(n_2 = 0, n_1 = 1, n_3 = n_4 = n \)

\(Q_1 = Q_2 = Q_3 = n^2 \), any \(r_{12} = r_{23} = r_{13} = R \)

non-scaling solutions:

\(n_2 = 0, n_1 = n_3 = 1, n_4 = n: r_{13} = r_{23} = R \) undetermined

\(Q_1 = Q_2 = n^n Q_3 = 1
\)

\(r_{12} = \frac{2 n r_{23}}{2 n + (n - 1) r_{23}} \)

\(n_2 = n_4 = n, n_1 = 1, n_3 = 2 n: r_{13} = r_{23} = R \) undetermined

\(Q_1 = Q_2 = n^2 Q_3 = 13 n^2
\)

\(r_{12} = \frac{r_{23}}{10 + r_{23}} \)

\(n_2 = 0, n_1 = 3 n, n_3 = 2 n, n_4 = n: r_{23} < 6 (2 - \sqrt{2}) n^2 \)

\(Q_1 = 2 n^2, Q_2 = 6 n^2, Q_3 = 3 n^2, r_{12} = \frac{12 n^2 r_{23}}{12 n^2 - r_{23}}, r_{13} = \frac{6 n^2 r_{23}}{6 n^2 - r_{23}} \)
Fuzz-balls of branes at angle

New boundary conditions

$$\ell_0 I = v_0 = 1, m_0 = m = k_0^3 = k^3 = k^2 = 0, k_0^1 = k_0^2 = g, k^1 = g(\ell_1 + \ell_2)$$

Generalized bubble equations

$$\sum_{j \neq i}^{N} \frac{k_{ij}^{(1)} k_{ij}^{(2)} k_{ij}^{(3)}}{r_{ij}} + k_i^1 k_i^2 k_i^3 - \sum_{l=1}^{3} k_i^l - g k_i^2 k_i^3 - g k_i^1 k_i^3 = 0$$

3-center case, $P_0 = 3$, n_1, n_2, n_3 positive integers, g rational

$$k_i^l = \begin{pmatrix} 0 & -n_1 & n_1 + g n_3 (n_1 + n_2) \\ n_2 & 0 & -n_2 \\ -n_3 & n_3 & 0 \end{pmatrix}$$

$$Q_1 = n_2 n_3, Q_2 = n_1 n_3, Q_3 = n_1 n_2 + g n_2 n_3 (n_1 + n_2)$$
Future directions
Future Directions

- Generalize to D3-brane configurations with generic tilting on orbifolds (e.g. T^6/Z_3)
- Compute the contribution to the entropy of the known configurations (scaling vs non-scaling) and understand their CFT (AdS) and/or Quiver Quantum Mechanics description
 [Denef, Pioline, Manschoot, Sen, Garavuso, ... Morales, Pieri, Russo w.i.p.]
- Apply similar techniques to scattering of closed string (massive) states [Garousi, Myers, Klebanov, Hashimoto, D’Appollonio, Di Vecchia, Russo, Veneziano, Turton, MB, Teresi, ...] ... work in progress, stay tuned
- Construct new micro-state SUGRA solutions corresponding to different choices of the open-string condensates
- Find ‘regular’ non extremal and realistic (four-charge) geometries
- Study fuzz-ball mergers and GW production ... experimental test of String Theory ?