High Friction Surfacing for Horizontal Curves

Pavement Evaluation 2010
Roanoke, Virginia
25-27 October 2010

David Merritt
Michael Moravec

HighFrictionRoads.com
What are High Friction Surfaces?

- High Friction Surfaces (HFS) are pavement surfacing systems with exceptional skid-resistant properties that are not typically acquired by conventional materials.
- Generally proprietary epoxy-based products and processes.

“…defined as having a minimum skid resistance value (SRV) of 65 measured using the portable Skid-Resistance Tester as defined in TRL Report 176: Appendix E.”
What is HFS used for?

- Bridge Decks (most common in U.S. to date)
- Pavements with poor friction or those susceptible to icing
- Intersections/Approaches
- Steep Grades
- Roundabouts
- Bus Stops
- Pedestrian Walkways
- Non-Tangent Pavement Sections
HFS Materials

• Aggregates
 – Generally calcined bauxite or flint, but slags, and granite materials with high PSV have also been used
 – Generally 3-4 mm maximum size

• Binder system (proprietary blends)
 – Bitumen-extended epoxy resins
 – Epoxy-resin
 – Rosin-ester
 – Polyurethane-resin
 – Acrylic-resin
HFS Installation

• Manually
 – Manual mixing of epoxy material
 – Manual application of epoxy with squeegee
 – Hand broadcast and distribution of aggregate
 – Production rates: 200-300 SY/hr.
HFS Installation

• Automated (machine-aided)
 – Machine mixing and application of epoxy
 (limited hand/squeegee work)
 – Machine broadcast/application of aggregate
 – Production rates up to 2,300 SY/hr.
 (1/4 mi. x 12’ in 40 min.)
Crashes at Horizontal Curves

• Roughly 28% of all fatal crashes occurred at horizontal curves (source: 2007 NHTSA FARS)

• The average crash rate for horizontal curves is approximately three times the crash rate of tangent sections
 – 69% were rural
 – 71% on minor arterials (rural and urban)
Percent Curve Crashes

2006-2008 Average
Crashes at Horizontal Curves

“Curves may justify a higher level of texture or higher threshold value for a friction-related parameter.”
Crashes at Horizontal Curves

Strategy 15.2 A7: Provide Skid-Resistant Pavement Surfaces (T)
Crashes at Horizontal Curves

Low-Cost Treatments for Horizontal Curve Safety

SKID-RESISTIVE PAVEMENT SURFACE TREATMENT

Description

Agencies should maintain pavements to ensure adequate friction necessary for vehicle braking and maneuvering under both dry and wet conditions. A vehicle will skid during braking and maneuvering when frictional demand exceeds the friction force that can be developed between the tire and the road surface. Horizontal curves are particularly prone to these types of crashes, especially under wet conditions. On road segments where skidding crashes are known to occur, consider applying remedial treatments, including specific asphalt mixtures (type and gradation of aggregate as well as asphalt content), pavement overlays on both concrete or asphalt pavements, and pavement grooving.

Application of skid-resistant pavement surface in curve.
FHWA Surface Enhancements At Horizontal Curves (SEAHC) Program

• Goals of SEAHC:
 – Demonstrate the effectiveness of High Friction Surfaces (HFS) in enhancing/restoring friction to reduce lane departure crashes at horizontal curves.
 – Measure the properties of HFS and monitor changes and performance over first year
 – Monitor crashes before and after HFS application

• Utilize currently available HFS products
• 3+ year study
• Initial Demonstration States: NC, KS, MT, CO, MI, TX
• Generally 2-5 sites per State (budget dependent)
Site Selection Criteria

– Non-tangent roadway sections with high rates of lane departure/run-off-road accidents (per AADT)
– Sections where poor friction is suspected (not geometry or driver behavior)
– Sections where no major maintenance and rehabilitation is planned for at least 3 years
– Sections where no other mitigative techniques will be used
FHWA Surface Enhancements At Horizontal Curves (SEAHC) Program

• Data Collection
 – Crash Data:
 • Historical: min. 3 years prior to installation
 • Post-Installation: 3 years following installation
 – Friction
 – Texture
 – Tire-Pavement Noise – OBSI (select sites only)
Friction

Dynamic Friction Tester (DFT)

Griptester

DOT-provided Locked Wheel Skid Trailer (ribbed and/or smooth tire)
Texture

Circular Track Meter (CTM) – MPD

RoboTex – MPD

ASTM E965 (“Sand Patch”) – MTD
Kansas

- HFS Vendor/Product: POLYCARB/SAFETYGRID
- Aggregate: Crushed Flint
- Projects:
 - K5, Leavenworth (HMA)
 - I35-I635 ramp, Kansas City (PCC)
 - K96-US54 ramp, Wichita (PCC)
 - K99, Wamego (HMA)
Kansas
Kansas – OBSI (~8 months old)

<table>
<thead>
<tr>
<th>Site</th>
<th>Overall OBSI Levels (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Abutting HMA</td>
</tr>
<tr>
<td>K99 NB</td>
<td>98.8</td>
</tr>
<tr>
<td>K99 SB</td>
<td>98.7</td>
</tr>
</tbody>
</table>

![Chart showing Site Overall OBSI Levels (dBA)](chart.png)
Kansas - performance
Montana

- HFS Vendor/Product: POLYCARB/SAFETYGRID
- Aggregate: Crushed Flint
- Projects:
 - I-15/I-90 ramp, Butte (Chip Seal)
 - US 93 SB, Missoula (Chip Seal)
Montana
Montana

Mean Profile Depth (CTM)

<table>
<thead>
<tr>
<th>Site</th>
<th>Pre-HFS</th>
<th>Post-HFS</th>
<th>1-Year Survey</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-15/I-90</td>
<td>2.5</td>
<td>2.2</td>
<td>1.8</td>
</tr>
<tr>
<td>US 93</td>
<td>2.7</td>
<td>2.4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mean Texture Depth (ASTM E965)

<table>
<thead>
<tr>
<th>Site</th>
<th>Pre-HFS</th>
<th>Post-HFS</th>
<th>1-Year Survey</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-15/I-90</td>
<td>3.0</td>
<td>2.8</td>
<td>2.5</td>
</tr>
<tr>
<td>US 93</td>
<td>3.2</td>
<td>3.0</td>
<td>2.7</td>
</tr>
</tbody>
</table>

20 kph Friction Value (DFT)

<table>
<thead>
<tr>
<th>Site</th>
<th>Pre-HFS</th>
<th>Post-HFS</th>
<th>1-Year Survey</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-15/I-90</td>
<td>1.0</td>
<td>0.8</td>
<td>0.6</td>
</tr>
<tr>
<td>US 93</td>
<td>1.1</td>
<td>0.9</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Grip Number (Griptester)

<table>
<thead>
<tr>
<th>Site</th>
<th>Pre-HFS</th>
<th>Post-HFS</th>
<th>1-Year Survey</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-15/I-90</td>
<td>0.9</td>
<td>0.7</td>
<td>0.5</td>
</tr>
<tr>
<td>US 93</td>
<td>0.9</td>
<td>0.7</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Montana - performance
Colorado

- HFS Vendor/Product: Crafco/Crafco HFS
- Aggregate: Crushed Flint
- Projects:
 - US 36, Lyons (HMA)
 - SR 119, Boulder Canyon (HMA)
 - I-25 NB, Pueblo (HMA)
 - I-25 SB, Pueblo (HMA)
 - HFS installations on I-25 were removed during a mill and overlay of I-25 due to deterioration of the underlying pavement.
Colorado
Colorado - performance
Michigan

• HFS Vendor/Product: POLYCARB/SAFETYGRID
• Aggregate: Calcined Bauxite and Crushed Flint
• Projects:
 – NB I-75 to NB Baldwin Rd. ramp, Auburn Hills (PCC)
 – NB I-75 to Rochester Rd. ramp, Auburn Hills (HMA)
 – WB I-69 to SB I-75 ramp, Flint (PCC)
 – WB I-96 to NB US 131 ramp, Grand Rapids (PCC)
Michigan
North Carolina

- HFS Vendor/Product: Ennis Paint/Tyregrip
- Aggregate: Calcined Bauxite
- Projects:
 - US 311 to I-40 ramp, Winston-Salem (HMA)
 - HFS installation was removed during the milling and overlay of the existing pavement due to deterioration of the underlying pavement.
North Carolina
General Observations

• Underlying pavement must be in good condition – no alligator/block/map cracking

• HFS products used to date have adhered well to all pavement types – HMA, Chip Seal, and PCC
 – PCC pavement must be shotblast prior to application
 – Cracks will reflect through regardless of the pavement type

• HFS naturally “sheds” aggregate for the first few weeks/months after installation

• HFS performs well under snowplow wear, but not studded tires
Surface Enhancements At Horizontal Curves (SEAHC) - Project Status

- Monitoring and Testing of Completed Installations
 - Most evidence of crash reduction is antidotal at this point
 - Continuously monitor performance (via local DOT feedback)
 - Re-test sites after 1 year (Michigan in 2011) for friction and texture
 - DOT to monitor crash rates over 3 year period (ending in 2012-2013)

- Pavement Performance Issues
 - Underlying pavement performance issues in NC and CO led to removal of the HFS
 - Will affect site selection criteria for future installations
Surface Enhancements At Horizontal Curves (SEAHC) - Summary

• To Date: 18 installations in 6 states using 3 different HFS vendors
• Participating State DOTs have enthusiastically embraced HFS as a cost-effective method for enhancing safety at horizontal curves
• HFS vendors are continually seeking to improve application equipment and installation practices
• HFS vendors have been extremely supportive and are the key element to the successful projects to date
• FHWA continues to support HFS as a solution for enhancing safety on pavement surfaces